
INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC01 September 1995

Philips Semiconductors

TDA8577

FEATURES

- Excellent common-mode rejection, up to high frequencies
- Elimination of source resistance dependency in the common-mode rejection
- · Few external components
- High supply voltage ripple rejection
- Low noise
- Low distortion
- All pins protected against electrostatic discharge
- AC and DC short-circuit safe to ground and V_{CC}
- · Fast DC settling.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The TDA8577 is a two channel differential amplifier with 0 dB gain and low distortion. The device has been primarily developed for car radio applications where long connections between signal sources and amplifiers (or boosters) are necessary and where ground noise has to be eliminated. The device is intended to be used to receive line inputs in audio applications that require a high level of common-mode rejection. The device is contained in a 9-pin single in-line package.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		5.0	8.5	18	V
I _{CC}	supply current	V _{CC} = 8.5	-	11	14	mA
Gv	voltage gain		-0.5	0	+0.5	dB
SVRR	supply voltage ripple rejection		55	60	-	dB
V _{no}	noise output voltage		-	3.7	5.0	μV
Z _i	input impedance		100	240	-	kΩ
CMRR	common-mode rejection ratio	$R_s = 0 \Omega$	-	80	-	dB

ORDERING INFORMATION

EXTENDED TYPE	PACKAGE				
NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
TDA8577	9	SIL9	plastic	SOT142	

FUNCTIONAL DESCRIPTION

capacitor within 0.2 seconds.

The TDA8577 contains two identical differential amplifiers with a voltage gain of 0 dB. The device is intended to receive line input signals for audio applications. The

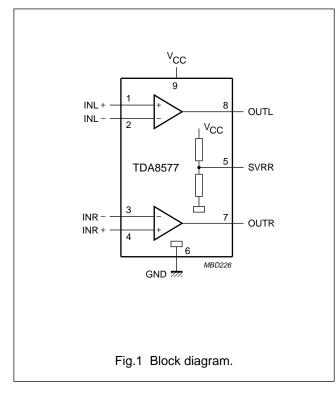
TDA8577 has a very high level of common-mode rejection and thus eliminates ground noise. The common-mode rejection remains constant up to high frequencies (the

amplifier gain is fixed at 0 dB). The inputs have a high input

impedance. The output stage is a class AB stage with a low output impedance. For a large common-mode rejection, also at low frequencies, an electrolytic capacitor

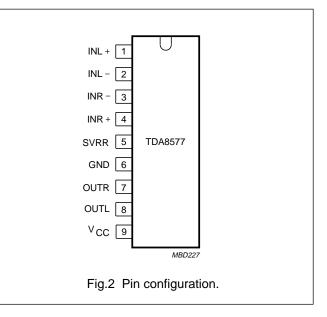
connected to the negative input is advised. Because the input impedance is relatively high, this results in a large settling time of the DC input voltage. Therefore a

quick-charge circuit is included to charge the input


All input and output pins are protected against high

electrostatic discharge conditions (4000 V, 150 pF, 150 Ω).

Dual common-mode rejection differential line receiver


TDA8577

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION	
INL+	1	positive input left	
INL-	2	negative input left	
INR-	3	negative input right	
INR+	4	positive input right	
SVRR	5	half supply voltage	
GND	6	ground	
OUTR	7	output right	
OUTL	8	output left	
V _{CC}	9	supply voltage	

TDA8577

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

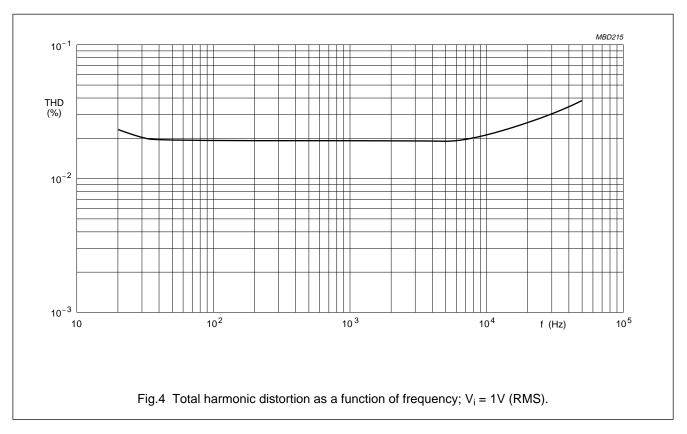
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage	operating	-	18	V
I _{ORM}	repetitive peak output current		-	40	mA
V _{sc}	AC and DC short-circuit safe voltage		-	18	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-40	+85	°C
Tj	maximum junction temperature		_	+150	°C

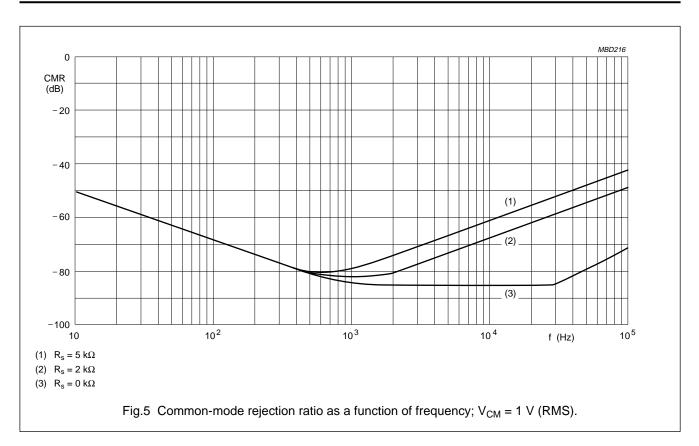
THERMAL RESISTANCE

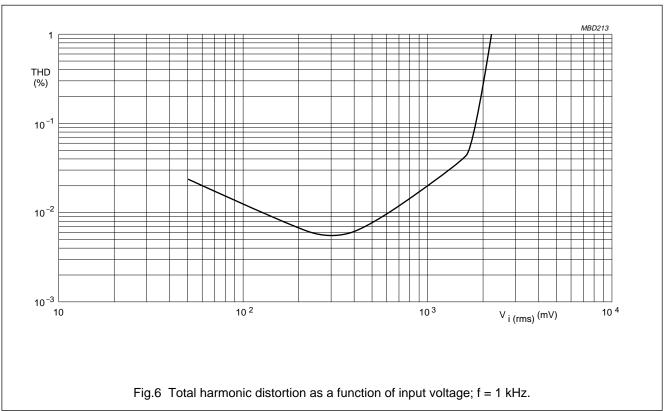
SYMBOL	PARAMETER	THERMAL RESISTANCE		
R _{th j-a}	from junction to ambient in free air	80 K/W		

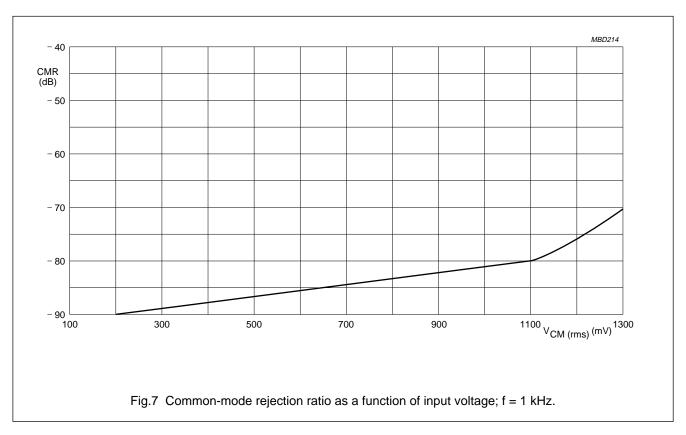
TDA8577

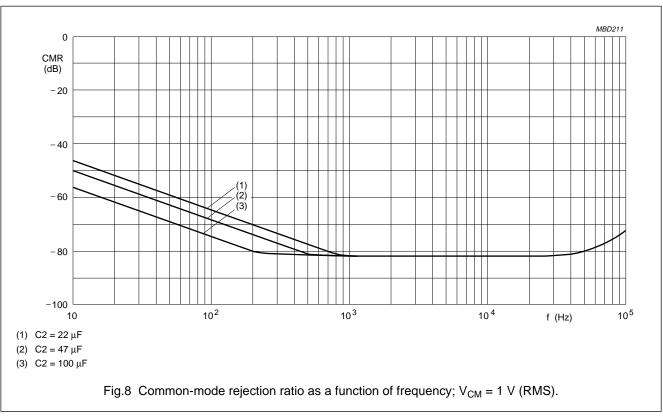
CHARACTERISTICS

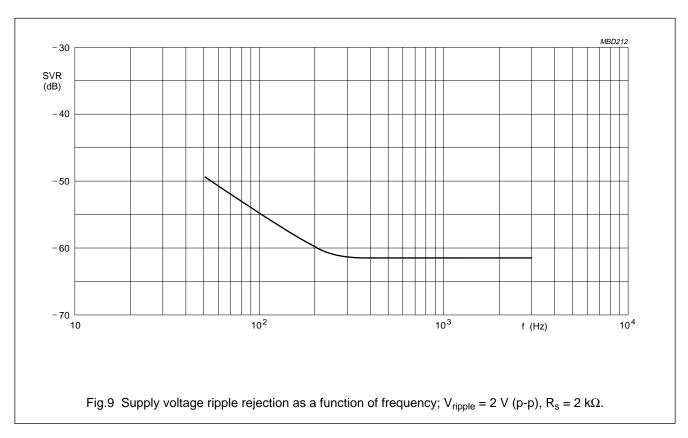

V_{CC} = 8.5 V; T_{amb} = 25 °C; f = 1 kHz; measured in test circuit of Fig.3; unless otherwise specified.

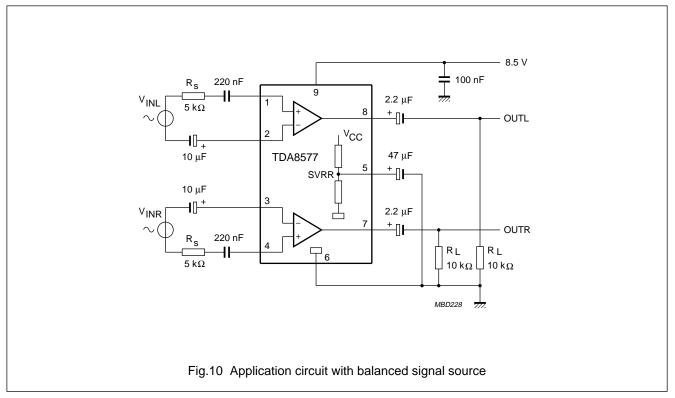

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		5.0	8.5	18	V
I _{CC}	supply current		-	11	14	mA
Vo	DC output voltage	note 1	-	4.3	_	V
t _{set}	DC input voltage settling time		-	0.2	_	S
G _v	voltage gain		-0.5	0	+0.5	dB
α _{cs}	channel separation	$R_s = 5 k\Omega$	70	80	_	dB
ΔG _v	channel unbalance		_	_	0.5	dB
fL	low frequency roll-off	-1 dB; note 2	20	_	_	Hz
f _H	high frequency roll-off	-1 dB	20	_	_	kHz
Z _i	input impedance		100	240	_	kΩ
Z _o	output impedance		-	_	10	Ω
V _{i(max)}	maximum input voltage	THD = 1%	_	2	_	V
V _{no}	noise output voltage	$R_s = 0 \Omega$; note 3	_	3.7	5.0	μV
V _{CM(rms)}	common-mode input voltage (RMS value)		-	-	1	V
CMRR	common-mode rejection ratio	$R_s = 5 k\Omega$	66	70	_	dB
		$R_s = 0 \Omega$; note 4	-	80	_	dB
SVRR	supply voltage ripple rejection	note 5	55	65	_	dB
		note 6	-	60	_	dB
THD	total harmonic distortion	V _i = 1 V;	-	0.02	-	%
		$V_i = 1 V;$ f = 20 Hz to 20 kHz	-	-	0.1	%
THD _{max}	total harmonic distortion at maximum output current	$V_i = 1 V; R_L = 150 \Omega$	-	-	1	%

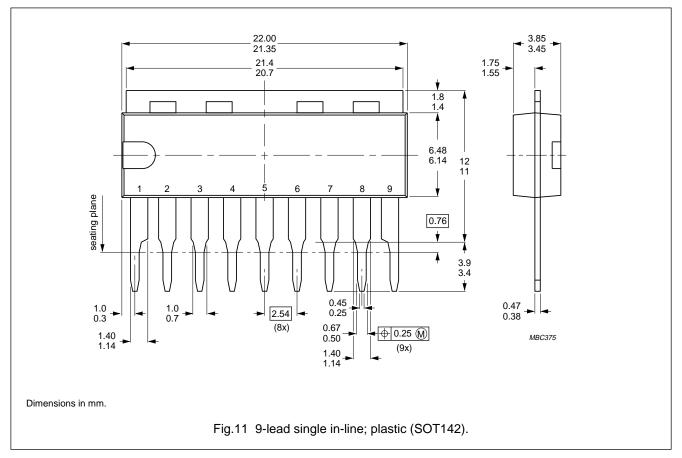

Notes


- 1. The DC output voltage with respect to ground is approximately $0.5V_{CC}$.
- 2. The frequency response is externally fixed by the input coupling capacitors.
- 3. The noise output voltage is measured in a bandwidth of 20 Hz to 20 kHz (unweighted).
- 4. The common-mode rejection ratio is measured at the output with a voltage source of 1 V (RMS) in accordance with the test circuit (see Fig.3) while V_{INL} and V_{INR} are shorted-circuited. Frequencies between 100 Hz and 100 kHz.
- 5. The ripple rejection is measured at the output, with $R_s = 2 k\Omega$, f = 1 kHz and a ripple amplitude of 2 V (p-p).
- The ripple rejection is measured at the output, with R_s = 0 to 2 kΩ, f = 100 Hz to 20 kHz and a maximum ripple amplitude of 2 V (p-p).


- 8.5 V 100 nF 220 nF R_s 9 łŀ 2.2 μF VINL 1 5 kΩ 8 +_]**|** OUTL \sim (2 Vcc 22 μF 47 μF TDA8577 5 +_]| ┨┠╧ SVRR 3 Г $^{\sf V}$ CM V_{INR} 2.2 μF 7 +_]| OUTR \sim R<u>s</u> 220 nF 4 $\Box_{\underline{6}}$ RL R∟ -H 5kΩ $10 \text{ k}\Omega$ _____10 kΩ MBD229 777. Fig.3 Test circuit.







APPLICATION INFORMATION

TDA8577

PACKAGE OUTLINE

SOLDERING

Plastic single in-line packages

BY DIP OR WAVE

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s.

Preliminary specification

TDA8577

DEFINITIONS

Data sheet status				
Objective specification	cification This data sheet contains target or goal specifications for product development.			
Preliminary specification	pecification This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values	Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)829-1166, Fax. (011)829-1849 Canada: INTEGRATED CIRCUITS: Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621, Tel. (571)217 4609, Fax. (01)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: P.O. Box 10 63 23, 20095 HAMBURG , Tel. (040)3296-0, Fax. (040)3296 213 Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)4245 121, Fax. (0)4806 960 India: PEICO ELECTRONICS & ELECTRICALS Ltd., Components Dept., Shivsagar Estate, Block '/ Dr. Annie Besant Rd., Worli, BOMBAY 400 018, Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200 Italy: Viale F. Testi, 327, 20162 MILANO Tel. (02)6752.1, Fax. (02)6752.3350 Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, KOKIO 108, Tel. (03)3740 5101, Fax. (03)3740 0570 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)757 5511, Fax. (03)757 4880 Mexico: Philips Components, 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Tel. (040)78 37 49, Fax. (040)78 83 99 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. (22)74 8000, Fax. (22)74 8341

Pakistan: Philips Markaz, M.A. Jinnah Rd., KARACHI 3, Tel. (021)577 039, Fax. (021)569 1832 Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 911, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (01)683 121, Fax. (01)658 013 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: 195-215 Main Road, Martindale, O. Box 7430, JOHANNESBURG 2000, Tel. (011)470-5433, Fax. (011)470-5494 Spain: Balmes 22, 08007 BARCELONA Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 7730 Taiwan: 69, Min Sheng East Road, Sec 3, P.O. Box 22978, TAIPEI 10446, Tel. (2)509 7666, Fax. (2)500 5899 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna - Trad Road Km. 3 Prakanong, BANGKOK 10260, Tel. (2)399-3280 to 9, (2)398-2083, Fax. (2)398-2080 Turkey: Talatpasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094 United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42 United States: INTEGRATED CIRCUITS: Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825

SCD27 © Philips Electronics N.V. 1993

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

9397 726 70011

Philips Semiconductors

