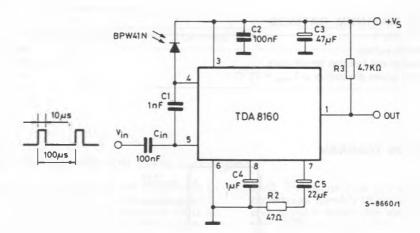
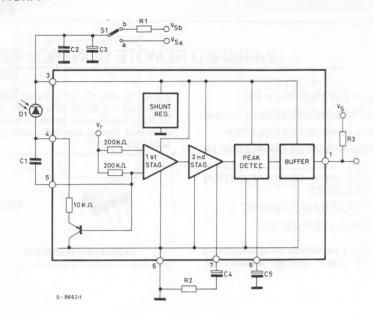


INFRARED REMOTE CONTROL RECEIVER

ADVANCE DATA

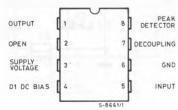

- LOW SUPPLY VOLTAGE (V_s = 5V)
- LOW CURRENT CONSUMPTION (I_S = 6mA)
- INTERNAL 5.5V SHUNT REGULATOR
- PHOTODIODE DIRECTLY COUPLED WITH THE I.C.
- INPUT STAGE WITH GOOD REJECTION AT LOW FREQUENCY
- LARGE INPUT DYNAMIC RANGE
- FEW EXTERNAL COMPONENTS

The TDA 8160 is a monolithic integrated circuit in -lead minidip plastic package specially de-


signed to amplify the infrared signals in remote controlled TV, Radio or VCR sets. It can be used in flash transmission mode in conjunction with dedicated remote control circuits (for example: M491-494).

TEST CIRCUIT

BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

V _s	Supply voltage Storage and junction temperature	16 -40 to 150	°C
	Total power dissipation at T _{amb} = 70°C	400	mW

CONNECTION DIAGRAM

(Top view)

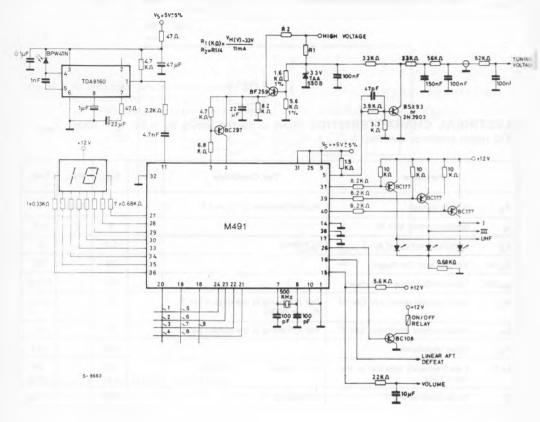
THERMAL DATA

R _{th J-amb}	Thermal resistance junction-ambient	max	200	°C/W
-----------------------	-------------------------------------	-----	-----	------

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $V_S = 5V$, $f_o = 10kHz$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
٧s	Supply voltage	Applied between pin 3 and 6	4	5	5.25	V
Is	Supply current (pin 3)			6		mA
٧3	Stabilized voltage at pin 3	I ₃ = 8mA		5.5		V
G _v 1st	Voltage gain (1st stage)			28		dB
g _m 2nd	Transconductance (2nd stage)			15		mA/\
V _{In}	Input voltage sensitivity (pin 5)	For full swing at the output pin 1 $R_{gen} = 600\Omega$		2		mVp
I _{in}	Input current sensitivity (pin 5)	For full swing at the output pin 1		10		nAp
R _{In}	Input impedance			200		ΚΩ
L _f R	Low frequency rejection at the input stage	C1 = 100pF f = 100Hz		30		dB
N	Noise signal at pin 7	C4 missing		200		mVpi

CIRCUIT DESCRIPTION (See the block diagram)


The infrared light received from D1 generates an AC signal that comes in to the device at pin 5. The capacitor C1 and the integrated $10 \text{K}\Omega$ resistor (pin 4) filter out the low frequency noise.

The first stage shows a voltage gain of about

28dB; the second stage is a voltage to current converter of 50mA/V ($R_2=Z\text{ero}$). A sensitive peak detector detects the amplifier signal; one open collector output (pin 1) gives out the recovered pulses.

Fig. 1 - Recommended application circuit for the drive of the IC M491 by means of a Flash Mode IR Transmitter only, in a TV 16 station memory Remote Control subsystem.

The above shown IR receiver application must be housed inside a metal can shield.

