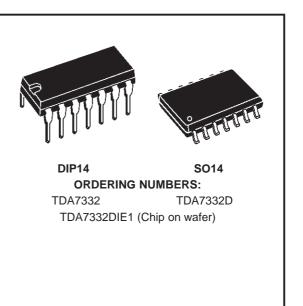


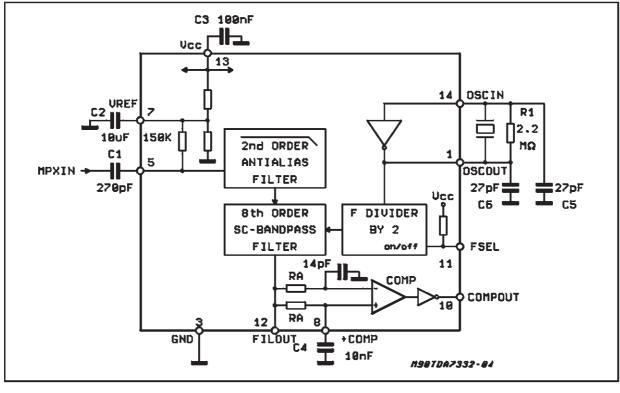
TDA7332

RDS FILTER

- HIGH PERFORMANCE, STABLE 57KHz FIL-TER
- HIGH SELECTIVITY
- FLAT GROUP DELAY
- HIGH PERFORMANCE LIMITER
- VERY FEW EXTERNAL COMPONENTS
- 4.332MHz CLOCK OSCILLATOR
- (8.664MHz OPTIONAL)


DESCRIPTION

The TDA7332 is an RDS filter, realized in switched capacitor technique.

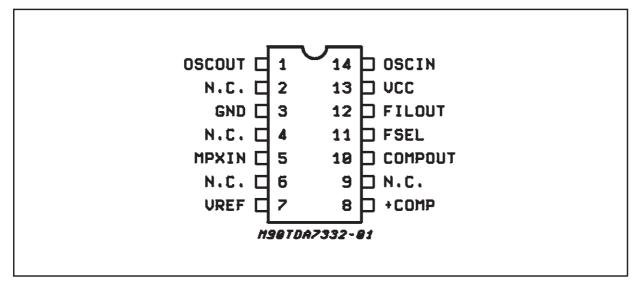

The 4 biquad stage architecture is working with 4.332 MHz clock.

Optionally a 8.664MHz xtal can be used.

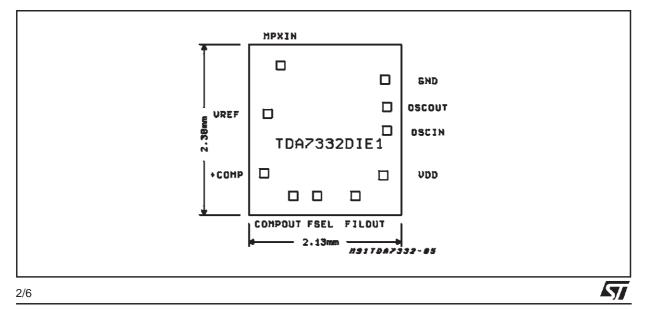
The filter has a center frequency of 57KHz and a bandwidth of 3KHz. Input 2nd order antialiasing filter and output smoothing filter are provided.

TEST CIRCUIT

November 1999


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	7	V
T _{op}	Operating Temperature Range	-40 to 85	°C
T _{stg}	Storage Temperature	-40 to 150	°C


THERMAL DATA

Symbol	Description	DIP14	SO14	Unit
R _{th j-case}	Thermal Resistance Junction-case Typ.	100	200	°C/W

PIN CONNECTION (Top view)

BONDING PAD LOCATIONS (Top view)

ELECTRICAL CHARACTERISTICS (V_{CC} = 5V, Tamb = 25°C; fosc = 4.332MHz; V_{IN} = 20mVrms unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
SUPPLY SECTION								

Is Supply Current 6 9 14 mA	V _{CC}	Supply Voltage	4.5	5	5.5	V
8 11 9	ls	Supply Current	6	9	14	mA

FILTER

	1					
Fc	Center Frequency		56.5	57	57.5	KHz
BW	3dB Bandwidth		2.5	3	3.5	KHz
G	Gain	f = 57KHz	18	20	22	dB
A	Attenuation	$\Delta f = \pm 4 KHz$ f = 38KHz; V _i = 500mVrms f = 67KHz; V _i = 250mVrms	18 50 35	22 80 50		dB dB dB
∆Ph	Phase non linearity	A (see note1) B (see note1) C (see note1)		0.5 1 2	5 7.5 10	DEG DEG DEG
Ri	Input Impedance		100	160	200	KΩ
S/N	Signal to Noise Ratio	V _i = 3mVrms	30	40		dB
Vi	Input Signal	$f = 19KHz; T3 \le -40dB$ (see note2) f = 57KHz (RDS + ARI)			1 50	Vrms mVrms
RL	Load Impedance	Pin 12	100			KΩ

LIMITER

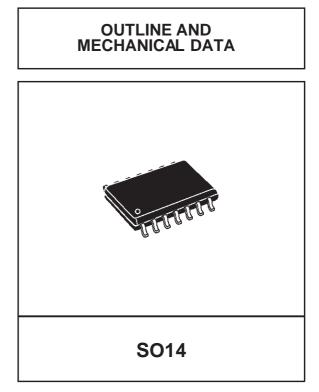
RA	Resistance pin 8-12		15	21	28	KΩ
V _{OL}	Comp. Output LOW	I _O = +0.5mA			1	V
V _{OH}	Comp. Output HIGH	IO = -0.5mA	4			V
	Duty Cycle	V _i = 1mVrms		50		%

OSCILLATOR

Fosc	Oscillator Frequency	F _{SEL} = Open F _{SEL} = Closed to Ground		4.332 8.664		MHz MHz
	Output Amplitude			5		V _{PP}
V _{CLL}	Clock Input Level LOW				1	V
V _{OLH}	Clock Input Level HIGH		4			V

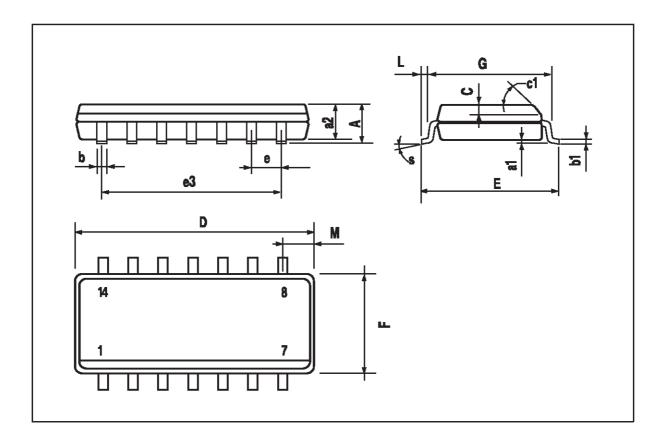
CRYSTAL TYPE = EURO QUARTZ

Note (1):

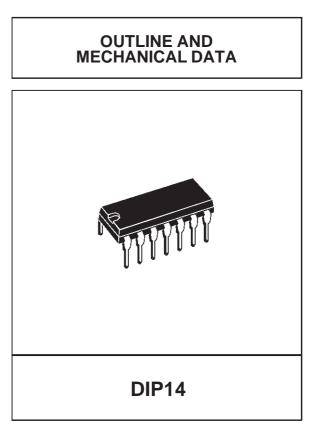

The phase non linearity is defined as: $\Delta Ph = |-2\phi f2 + \phi f1 + \phi f3|$ where ϕfx is the input-output phase difference at the frequency fx (x = 1,2,3)

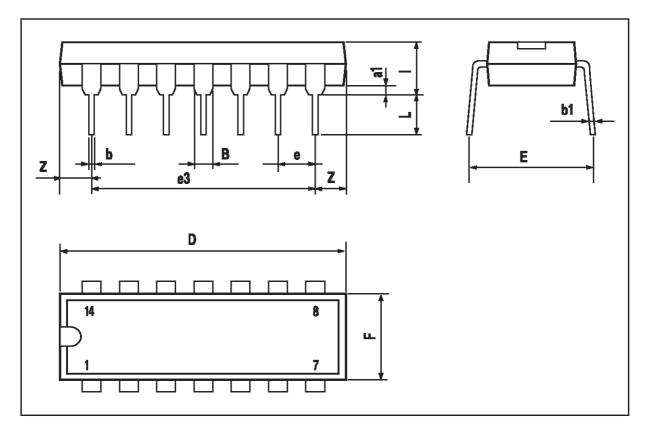
Measure	asure f1 (KHz) f2 (KHz) f		f3 (KHz)	Δ Ph max	
А	56.5	57	57.5	<5°	
В	56	57	58	<7.5°	
С	55.5	57	58.5	<10°	

Note (2): The 3th harmonic (57KHz) at the output (pin12) must be less than -40dB in respect to the input signal plus gain.


57

DIM.		mm			inch				
Dini.	MIN	TYP.	MAX	MIN	TYP	MAX			
Α			1.75			0.069			
a1	0.1		0.25	0.004		0.009			
a2			1.6			0.063			
b	0.35		0.46	0.014		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.020				
c1			45° (typ.)					
D (1)	8.55		8.75	0.336		0.344			
E	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		7.62			0.300				
F (1)	3.8		4	0.150		0.157			
G	4.6		5.3	0.181		0.209			
L	0.4		1.27	0.016		0.050			
М			0.68			0.027			
S		8° (max.)							


57


(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

4/6

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com