SGS-THOMSON MICROELECTRONICS

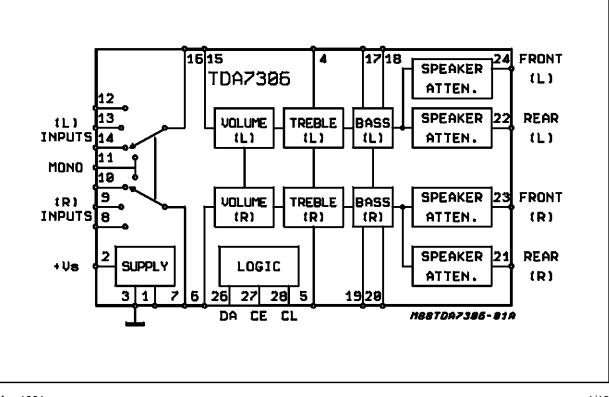
DIGITAL CONTROLLED STEREO AUDIO PROCESSOR

ADVANCE DATA

- CONTROL IS ACCOMPLISHED BY MI-CROWIRE/SPI - COMPATIBLE SERIAL BUS INTERFACE
- INPUT AND OUTPUT PINS FOR EXTERNAL EQUALIZER
- THREE STEREO INPUT SOURCE SELEC-TION PLUS MONO INPUT
- TREBLE, BASS, VOLUME AND BALANCE CONTROL
- FOUR INDEPENDENT SPEAKER CONTROL (FRONT/REAR)
- SINGLE SUPPLY OPERATION
- VERY LOW NOISE AND VERY LOW DIS-TORTION
- POP FREE SWITCHING

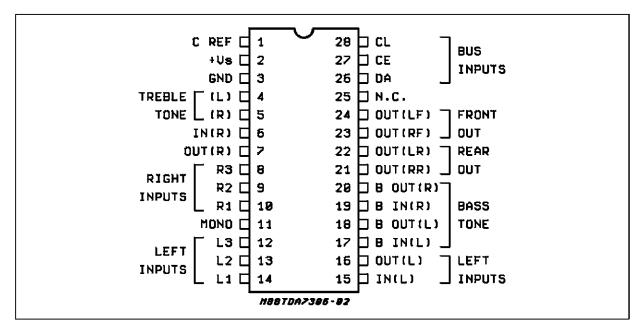
DESCRIPTION

The TDA7306 is a volume, tone (bass and treble),


BLOCK DIAGRAM

balance (left/right) and fader (front/rear) processor for high quality audio applications in car radio and Hi-Fi systems.

The AC signal setting is obtained by resistor networks and analog switches combined with operational amplifiers.


The results are: low noise, low distortion and high dynamic range.

May 1991

This is advanced information on a new product now in developmentor undergoing evaluation. Details are subject to change without notice. notice.

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	14	V
Ptot	Total Power Dissipation ($T_{amb} = 25^{\circ}C$)	2	W
T _{amb}	Operating Ambient Temperature Range	-40 to +85	°C
T _{stg}	Storage Temperature	-40 to 150	°C

THERMAL DATA

Symbol	Description	Value	Unit
R _{th j-pins}	Thermal Resistance Junction-pins Max	65	°C/W

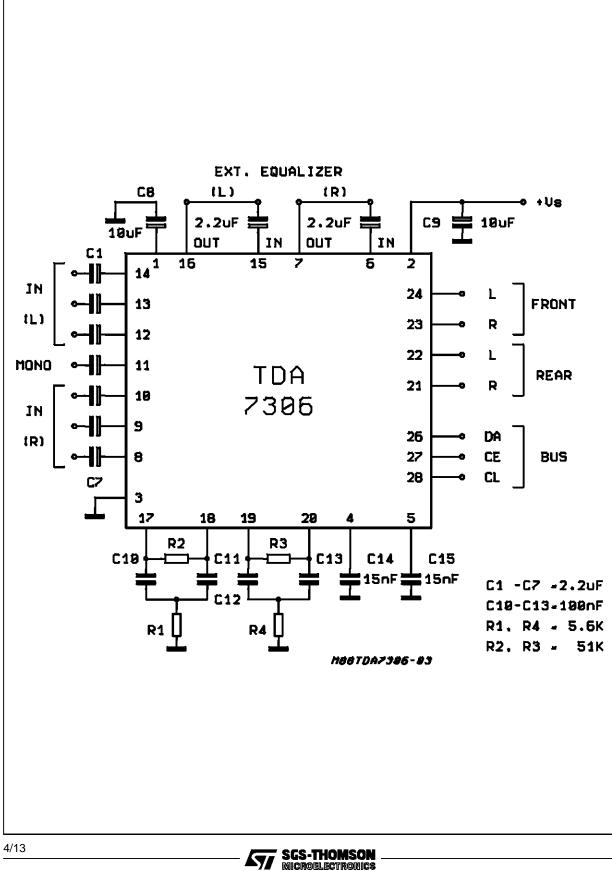
ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, V_S = 10V , R_L = 10K Ω ; R_g = 600 Ω , f = 1KHz unless otherwise specified)

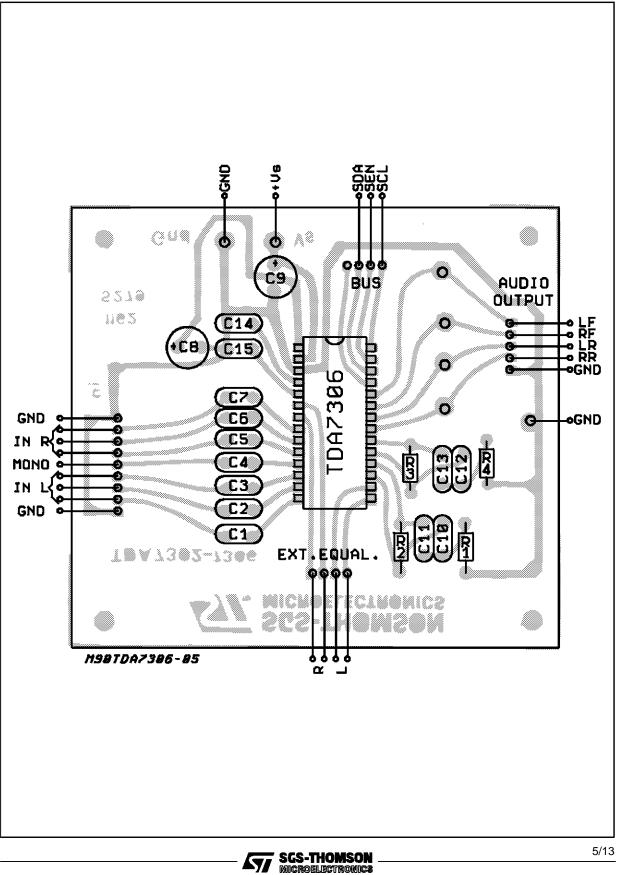
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
Vs	Supply Voltage		6	10	14	V
ls	Supply Current		15	30	40	mA
SVR	Ripple Rejection	f = 300Hz to 10KHz	50	60		dB
INPUT SEL	ECTORS					
Ri	Input Resistance		30	45		KΩ
V _I (DC)	Input DC Voltage		3.5	4.3	5	V
VIN MAX	Max. Input Signal	GV = 0dB d = 0.3%	1.5	2.0		Vrms
INs	Input Separation	f = 1KHz (2)	90	100		dB
		f = 10KHz (2)	70	80		dB
RL	Output Load Resistance		5			KΩ

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit	
VOLUME C	ONTROLS					
R _{IN}	Input Resistance		10	18	26	KΩ
	Control Range			78		dB
G _{max}	Max Gain		8	10	12	dB
	Max Attenuation		48	52.4		dB
	Step Resolution			1.6	2.5	dB
	Attenuator Set Error	G _V = -50 to 10dB			2	dB
	Tracking Error				2	dB
SPEAKER /	ATTENUATORS					
	Control Range		38	41	44	dB
	Step Resolution	see Note (3)				
	Attenuator Set Error				3	dB
	Tracking Error				2	dB
BASS AND	TREBLE CONTROL (1)					
	Control Range			±15		dB
	Step Resolution			2.5	3.5	dB
	TPUT					
Vo	Max. Output Voltage	d = 0.3%	1.5	2.2		Vrms
RL	Output Load Resistance		2			KΩ
CL	Output Load Capacitance				1	nF
Ro	Output Resistance			70	150	Ω
V _O (DC)	DC Voltage Level		3	3.8	4.5	V
GENERAL						
e _{NO}	Output Noise	$BW = 22Hz$ $G_V = 0dB$		6	15	
		to 22KHz Out atten. ≥ 20dB		3.5] μV
		G _v = 0dB Curve A		4		
S/N	Signal to Noise Ratio	All gain = 0dB V_0 = 1Vrms BW = 22Hz to 22KHz		105		dB
d	Distortion	$f = 1KHz; V_0 = 1V; G_v = 0$		0.01	0.1	%
	Frequency Response (-1dB)	G _v = 0 High Low	20		20	KHz Hz
S _C	Channnel Separation left/right	f = 1KHz f = 10KHz	90 70	100 80		dB dB

BUS INPUTS


VIL	Input LOW Voltage		0.8	V
ViH	Input HIGH Voltage	2.4		V
	Digital Input Current	-5	+5	μA


Notes:

(1) Bass and Treble response see attached diagram. The center frequency and quality of the resonance behaviour can be choosen by the external circuitry. A standard first order bass response can be realized by a standard feedback network.
(2) The selected input is grounded thru the 2.2μF capacitor.
(3) See speaker attenuators table on "Software specification".

Figure 1: Application Circuit

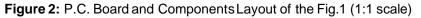


Figure 3: Total Output Noise vs. Volume Setting

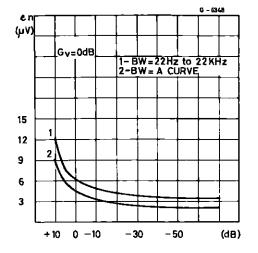


Figure 5: Distortion + Noise vs. Frequency

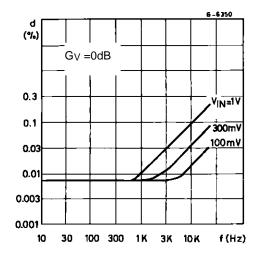


Figure 7: Distortion vs. Load Resistance

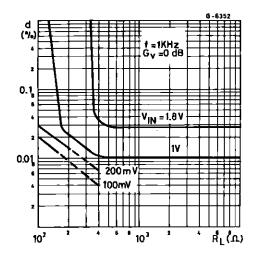


Figure 4: Signal to Noise Ratio vs. Volume Setting

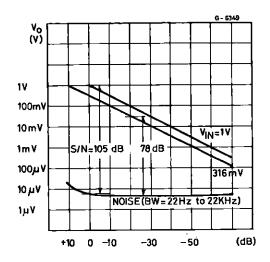


Figure 6: Distortion vs. Output Voltage

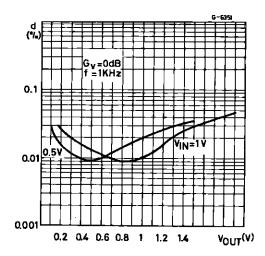
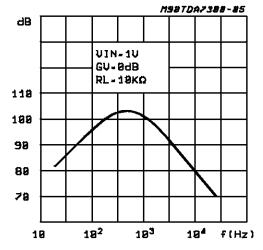
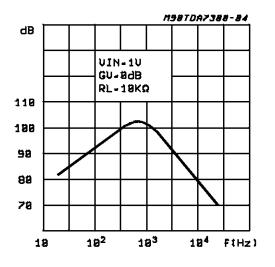




Figure 8: Channel Separation (L1 - R1) vs. Frequency

SGS-THOMSON MICROELECTRONICS Figure 9: Input Separation (L1 - L2) vs. Frequency

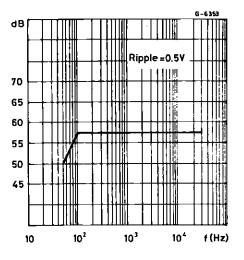
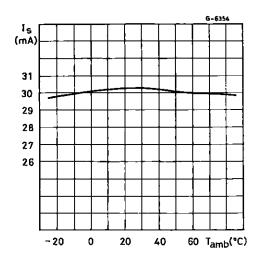
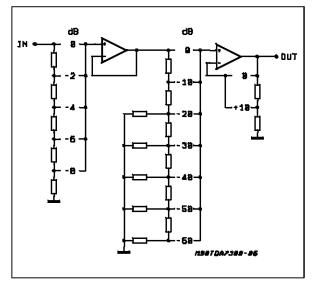



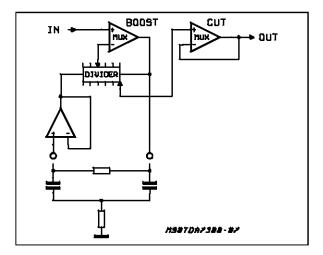
Figure 11: Quiescent Current vs. Temperature


APPLICATION INFORMATION

Volume Control Concept

Traditional electronic volume control circuits use a multiplier technique with all the disadvantages of high noise and distortion.

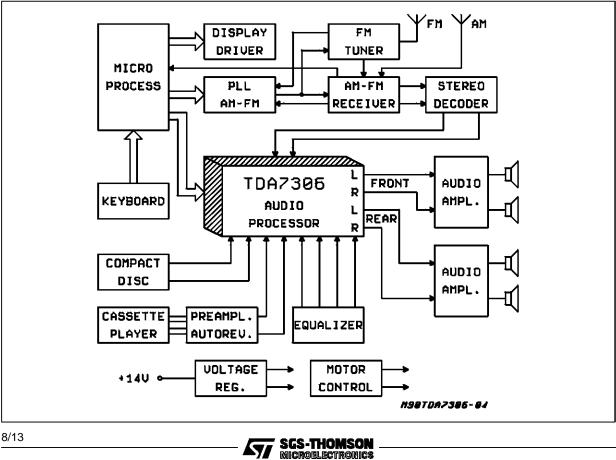
The used concept, as shown in Fig. 12 with digital switched resistor dividers, provides extremely low noise and distortion. The multiplexing of the resistive dividers is realized with a multiple-input operational amplifier.


Figure 12: Volume Control

Bass and Treble Control

The principle operation of the bass control is shown in Fig. 13. The external filter together with the internal buffer allows a flexible filter design according to the different requirements in car radios. The function of the treble is similar to the bass. A typical curve is shown in Fig.14.

Figure 13: Bass Control


APPLICATION INFORMATION (continued)

Outputs

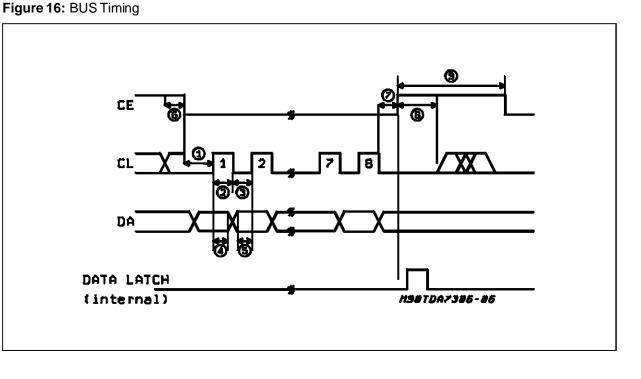
A special class-A output amplifier with a modu-Figure 14: Typical Tone Response

dB 10 5 Ô -5 -10 -15 10² 20 10³ f(Hz)

Figure 15: Complete Car-Radio System using Digital Controlled Audio Processor

lated sink current provides low distortion and ground compatibility with low current consumption.

APPLICATION INFORMATION (continued)


SERIAL BUS INTERFACE

The serial bus interface is compatible to MI-CROWIRE and SPI bus systems. During the LOW state of the chip enable signal

During the LOW state of the chip enable signal (CE) the data on pin DA are clocked into the shift register at the LOW to HIGH transition of the clock signal CL.

At the LOW to HIGH transition of the CE signal the content of the internal shift register is stored into the addressed latches. The transmission is separated into bytes with 8 bit according to the data specification of the audioprocessor. After every byte a positive slope of the CE signal has to be generated in order to store the data byte.

A special clock counter enables the latch of the data byte only, if exactly 8 clocks were present during the LOW state of the CE signal. This results in a high immunity against spikes on the clock line and avoids a storage of wrong databytes.

Nr.	Parameter	Min.	Max.	Units
	Clock Frequency		250	KHz
1	CE Lead time	4		μs
2	Clock High Time	2		μs
3	Clock Low Time	2		μs
4	Data Hold Time	1.8		μs
5	Data Setup Time	1.8		μs
6	Clock Setup Time	0		μs
7	CE lagtime	0		μs
8	Clock Hold Time	6		μs
9	CE High TIme	6		μs

SOFTWARE SPECIFICATION DATA BYTES

MS	в					L	.SB	Function
0	0	B2	B1	B0	A2	A1	A0	Volume Control
1	0	0	B1	B0	A2	A1	A0	Speaker ATT LF
1	0	1	B1	B0	A2	A1	A0	Speaker ATT RF
1	1	0	B1	B0	A2	A1	A0	Speaker ATT LR
1	1	1	B1	B0	A2	A1	A0	Speaker ATT RR
0	1	0	Х	Х	S2	S1	S0	Audio switch
0	1	1	0	C3	C2	C1	C0	Bass control
0	1	1	1	C3	C2	C1	C0	Treble control

X = don't care Ax = 2dB steps Bx = 10dB steps Cx = 2.5dB steps

VOLUME

STATUS AFTER POWER-ON-RESET

Volume	-66dB
Speaker	-38dB
Audio Switch	Mono
Bass	+2.5dB
Treble	+2.5dB

MSB							LSB	
0	0	B2	B1	B0	A2	A1	A0	Volume 2dB Steps
					0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 -1.6 -3.2 -4.8 -6.4 Not allowed
					1	1 1	0	Not allowed Not allowed
0	0	B2 0 0 0 1 1 1 1	B1 0 1 1 0 0 1 1	B0 0 1 0 1 0 1 0 1				Volume 10dB Steps +10 +2 -8 -16 -24 -32 -40 -48

For example if you want setting the volume at -25.6dB the 8 bit string is: 0 0 1 0 0 0 0 1

SPEAKER ATTENUATORS

MSB							LSB	
1	0	0	B1	B0	A2	A1	A0	Speaker LF
1	0	1	B1	B0	A2	A1	A0	Speaker RF
1	1	0	B1	B0	A2	A1	A0	Speaker LR
1	1	1	B1	B0	A2	A1	A0	Speaker RR
					0	0	0	0
					0	0	1	-1
					0	1	0	-2
					0	1	1	-4
					1	0	0	-5
					1	0	1	Not allowed
					1	1	0	Not allowed
					1	1	1	Not allowed
			0	0				0
			0	1				-6
			1	0				-18
			1	1				-36

For example attenuation of 20dB on speaker RF is given by: 1 0 1 1 0 0 1 0

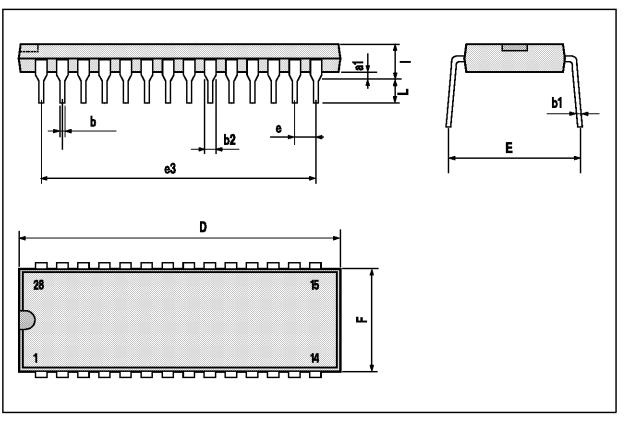
SOFTWARE SPECIFICATION (continued)

AUDIO SWITCH - Select the input Channel to Activate

MSB							LSB	
0	1	0	Х	Х	S2	S1	S0	Audio Switch
			Х	Х	0	0	0	Stereo 1
			Х	Х	0	0	1	Stereo 2
			Х	Х	0	1	0	Stereo 3
			Х	Х	0	1	1	Mute Input
			Х	Х	1	0	0	Mono
			Х	Х	1	0	1	Not Allowed
			Х	Х	1	1	0	Not Allowed
			Х	Х	1	1	1	Not Allowed

X = don't care

For example to set the stereo 2 channel the 8 bit string must be: 0 1 0 0 0 0 0 1


0	1 1	1 1	0 1	C3 C3	C2 C2	C1 C1	C0 C0	Bass Treble
				0	0	0	0	- 15
				0	0	0	1	- 15
				0	0	1	0	- 12.5
				0	0	1	1	- 10
				0	1	0	0	- 7.5
				0	1	0	1	- 5
				0	1	1	0	- 2.5
				0	1	1	1	- 0
				1	1	1	1	0
				1	1	1	0	2.5
				1	1	0	1	5
				1	1	0	0	7.5
				1	0	1	1	10
				1	0	1	0	12.5
				1	0	0	1	15
				1	0	0	0	15

C3 = Sign For example Bass at -12.5dB is obtained by the following 8 bit string: 01 100010

DIP28 PACKAGE MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1		0.63			0.025		
b		0.45			0.018		
b1	0.23		0.31	0.009		0.012	
b2		1.27			0.050		
D			37.34			1.470	
E	15.2		16.68	0.598		0.657	
е		2.54			0.100		
e3		33.02			1.300		
F			14.1			0.555	
I		4.445			0.175		
L		3.3			0.130		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microlectronics, conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

