

# **TDA7276**

# SPEED REGULATOR FOR SMALL DC MOTOR

PRELIMINARY DATA

The TDA7276 is a monolithic integrated circuit in 4 + 4 lead minidip plastic package designed for DC motors speed regulation in tape and cassette recorders, toys, etc.

It offers speed regulation versus supply voltage temperature and load changes better than conventional circuits built with discrete components.

Main features are:

- Excellent versatility in use
- High output current (up to 1A)
- Low reference voltage (1.25V)

- High temperature stability
- High power capability
- Low number of external parts



### ABSOLUTE MAXIMUM RATINGS

| Vs                                | Supply voltage                                      | 20         | V  |
|-----------------------------------|-----------------------------------------------------|------------|----|
| I.                                | Output current                                      | 1.2        | A  |
| Ptot                              | Total power dissipation at $T_{amb} = 70^{\circ}C$  | 1          | W  |
| Ptot                              | Total power dissipation at $T_{plns} = 70^{\circ}C$ | 4          | W  |
| T <sub>stg</sub> , T <sub>j</sub> | Storage and junction temperature                    | -40 to 150 | °C |

#### APPLICATION CIRCUIT



# TDA7276

#### CONNECTION DIAGRAM (Top view)



#### THERMAL DATA

| R <sub>th I-pins</sub> | Thermal resistance junction-pins    | max | 20 | °C/W |
|------------------------|-------------------------------------|-----|----|------|
| R <sub>thJ-amb</sub>   | Thermal resistance junction-ambient | max | 80 | °C/W |

## **TEST CIRCUIT**





# **ELECTRICAL CHARACTERISTICS** (Refer to the test circuit, $T_{amb} = 25^{\circ}C$ , $V_s = 6V$ )

| Parameter                                     |                                             | Test Conditions                                 |                                  | Min. | Тур.  | Max. | Unit |
|-----------------------------------------------|---------------------------------------------|-------------------------------------------------|----------------------------------|------|-------|------|------|
| Vin                                           | Supply voltage range                        | I <sub>M</sub> = 0.1A                           | $\Delta V_{ref}/V_{ref} = -5\%$  | 2.5  |       | 18   | v    |
| V <sub>ref</sub>                              | Reference voltage<br>(between pins 1 and 4) | I <sub>M</sub> = 0.1A                           |                                  | 1.1  | 1.25  | 1.35 | V    |
| ld                                            | Quiescent drain current                     | 1 <sub>M</sub> = 100μA                          |                                  |      | 1.1   | 2.1  | mA   |
| IMS                                           | Starting current                            | V <sub>s</sub> = 2.5V                           | $\Delta V_{ref}/V_{ref} = -50\%$ | 0.5  | 0.8   |      | A    |
| IMS                                           | Starting current                            | V <sub>s</sub> = 5V                             | $\Delta V_{ref}/V_{ref} = -50\%$ | 1.0  |       |      | A    |
| K = I <sub>M</sub> /I <sub>T</sub>            | Reflection coefficient                      | I <sub>M</sub> = 0.1A                           |                                  | 18   | 20    | 22   | -    |
| $\frac{\Delta K}{K} / \Delta V_{s}$           |                                             | $V_s = 6V$ to $18V$                             | 1 <sub>M</sub> = 0.1A            |      | 0.45  |      | %/V  |
| ΔK<br>K                                       |                                             | I <sub>M</sub> = 25 to 400mA                    |                                  |      | 0.005 |      | %/mA |
| <u>ΔK</u><br><u>κ</u> /ΔT                     |                                             | $T_{amb} = -20 \text{ to } 70^{\circ} \text{C}$ | I <sub>M</sub> = 0.1 <u>A</u>    |      | 0.02  |      | %/°C |
| $\frac{\Delta V_{ref}}{V_{ref}}/\Delta V_{s}$ | Line regulation                             | V <sub>s</sub> = 6V to 18V                      | I <sub>M</sub> = 0.1A            |      | 0.02  |      | %/V  |
| $\frac{\Delta V_{ref}}{V_{ref}}/\Delta I_{M}$ | Load regulation                             | I <sub>M</sub> = 25 to 400mA                    |                                  |      | 0.009 |      | %/mA |
| $\frac{\Delta V_{ref}}{V_{ref}} / \Delta T$   | Temperature coefficient                     | $T_{amb} = -20 \text{ to } 70^{\circ}\text{C}$  | I <sub>M</sub> = 0.1A            |      | 0.02  |      | %/°C |



### PRINCIPLE OF OPERATION

The device acts an emf speed regulator providing correction for the internal losses of the motor. The voltage across  $R_{\rm S}$  is kept constant by the IC and equal to  $V_{\rm ref}=1.25V$  typ. (see application circuit).

The current through the resistance R<sub>T</sub> is:

$$I_{RT} = I_{RS} + I_d + \frac{I_M + I_{RS}}{K}$$

where:

$$I_{RS} = \frac{V_{ref}}{R_s}$$

 $I_d$  = quiescent drain current (1.1mA typ.)  $I_M$  = motor current

K = reflection coefficient (20 typ.)

 $E_{\rm g}$  being the motor's back electromotive force and  $R_{\rm M}$  its internal resistance; the voltage across the motor itself will be:

$$E_q + R_M I_M = R_T I_{RT} + V_{ref}$$

therefore:

$$E_{g} = I_{M} \left(\frac{R_{T}}{K} - R_{M}\right) + V_{ref} \cdot \left[\frac{R_{T}}{R_{S}}\left(1 + \frac{I}{K}\right) + 1\right] + R_{T} I_{d}$$

Motor's speed will be independent from resisting torque if  $E_{\alpha}$  doesn't depend on  $I_{M}$ , then will do:

 $R_{\rm T}=K~R_{\rm M}$  (if  $R_{\rm T}>K_{\rm min}~R_{\rm M}$  min oscillations may occur) - Back emf rated to the wanted speed can be selected acting to  $R_{\rm S}$  -  $R_{\rm S}$  variations will lead to an hyperbolic adjustment of the speed :

$$R_{S} = R_{T} \frac{V_{ref} (1 + 1/K)}{E_{g} - V_{ref} - R_{T} I_{d}}$$

