DATA SHEET

TDA4568
 Luminance signal delay circuit

Preliminary specification
File under Integrated Circuits, IC02

Luminance signal delay circuit

GENERAL DESCRIPTION

The TDA4568 is an integrated circuit that provides the luminance signal delay in colour television receivers.

Features

- A luminance signal path (Y) which substitutes the conventional Y-delay coil with an integrated Y-delay line
- Switchable delay time from 550 ns to 820 ns in steps of 90 ns and additional fine adjustment of 37 ns
- Two Y output signals; one of 180 ns less delay

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage (pin 10)		V_{P}	10.8	12	13.2	V
Supply current (pin 10)		I_{P}	-	22	-	mA
Y-signal delay at pin 12	S1 open; $\mathrm{R}_{14-18}=1.2 \mathrm{k} \Omega$; note 1					
$\mathrm{V}_{15-18}=0$ to 2.5 V		t_{17-12}	490	550	610	ns
$\mathrm{V}_{15-18}=3.5$ to 5.5 V		t_{17-12}	580	640	700	ns
$\mathrm{V}_{15-18}=6.5$ to 8.5 V		t_{17-12}	670	730	790	ns
$\mathrm{V}_{15-18}=9.5$ to 12 V		t_{17-12}	760	820	880	ns
Y-signal amplification	0.5 MHz	α_{Y}	0	1	2	dB

Note

1. Delay time is proportional to resistor R_{14-18}.
R_{14-18} also influences the bandwidth; a value of $1.2 \mathrm{k} \Omega$ results in a bandwidth of 5 MHz (typ.).

PACKAGE OUTLINE

18-lead DIL; plastic (SOT102); SOT102-1; 1996 November 27.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

THERMAL RESISTANCE

From junction to ambient (in free air) $\quad R_{\text {th j-a }}=70 \mathrm{~K} / \mathrm{W}$

Note

1. Pins 13 and 14 , DC potential not published.

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{10-18}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in application circuit Fig.3; unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply (pin 10)						
Supply voltage		V_{P}	10.8	12	13.2	V
Supply current		$\mathrm{IP}^{\text {P }}$	-	22	-	mA
Y-signal path						
Y-input voltage						
(composite signal)	capacitive					
(peak-to-peak value)	coupling	$V_{17(p-p)}$	-	0.45	0.62	V
Internal bias voltage	during clamping	V_{17-18}	2.1	2.4	2.7	V
Input current						
during picture content		l_{17}	-	8	12	$\mu \mathrm{A}$
during sync. pulse		$-l_{17}$	-	100	150	$\mu \mathrm{A}$
Y-signal delay at pin 12	S1 open; $\mathrm{R}_{14}=1.2 \mathrm{k} \Omega$; notes 1 and 2					
at $\mathrm{V}_{15-18}=0$ to 2.5 V		t_{17-18}	490	550	610	ns
at $\mathrm{V}_{15-18}=3.5$ to 5.5 V		$\mathrm{t}_{17 \text {-18 }}$	580	640	700	ns
at $\mathrm{V}_{15-18}=6.5$ to 8.5 V		$\mathrm{t}_{17 \text {-18 }}$	670	730	790	ns
at $\mathrm{V}_{15-18}=9.5$ to 12 V		$\mathrm{t}_{17 \text {-18 }}$	760	820	880	ns
Fine adjustment of Y -signal delay for all 4 steps	S1 closed	$\mathrm{t}_{17 \text {-12 }}$	-	37	-	ns
Signal delay between pin 11 and pin 12	S1 open	t_{11-12}	160	180	200	ns
Dependency of delay time						
on temperature		$\frac{\Delta t_{17-12}}{t_{17-12} \cdot \Delta T_{j}}$	-	0.001	-	K^{-1}
on supply voltage		$\frac{\Delta \mathrm{t}_{17-12}}{\mathrm{t}_{17-12} \cdot \Delta \mathrm{~V}_{\mathrm{P}}}$	-	-0.03	-	V^{-1}
Input switching current		$-l_{15}$	-	15	25	$\mu \mathrm{A}$
Y-signal attenuation	$\mathrm{f}=0.5 \mathrm{MHz}$					
pin 11 from pin 17		$\mathrm{V}_{11} / \mathrm{V}_{17}$	-1	0	+1	dB
pin 12 from pin 17		$\mathrm{V}_{12} / \mathrm{V}_{17}$	0	+1	+2	dB
Frequency response at 3 MHz referred to 0.5 MHz	note 3					
pin 11		$\frac{V_{11}(3 \mathrm{MHz})}{\mathrm{V}_{11}(0.5 \mathrm{MHz})}$	0	-	3.0	dB
pin 12		$\frac{V_{12}(3 \mathrm{MHz})}{V_{12}(0.5 \mathrm{MHz})}$	0	-	3.0	dB

Notes

1. R_{14-18} influences the bandwidth; a value of $1.2 \mathrm{k} \Omega$ results in a bandwidth of 5 MHz (typ.).
2. Delay time is proportional to resistor R_{14-18}. Devices with suffix " A " require the value of the resistor to be $1.15 \mathrm{k} \Omega$; a $27 \mathrm{k} \Omega$ resistor connected in parallel with $R_{14-18}=1.2 \mathrm{k} \Omega$.
3. Frequency response measured with $\mathrm{V}_{15-18}=9.5 \mathrm{~V}$ and switch S 1 open.
4. Output current measured with emitter follower with constant current source of 0.6 mA .

APPLICATION INFORMATION

(1) Switching sequence for delay times shown in Table 1.
(2) $\mathrm{R}_{14-18}=1.2 \mathrm{k} \Omega$ for TDA4568.
$R_{14-18}=1.15 \mathrm{k} \Omega$ for TDA4568A ($27 \mathrm{k} \Omega$ resistor connected in parallel to $1.2 \mathrm{k} \Omega$).

Fig. 3 Application diagram and test circuit.

Table 1 Switching sequence for delay times.

CONNECTION ${ }^{(2)}$			VOLTAGE AT PIN 15	DELAY TIME (ns) ${ }^{(1)}$
(a)	(b)	(c)		
0	0	0	0 to 2.5 V	550
0	0	X	3.5 to 5.5 V	640
0	X	X	6.5 to 8.5 V	730
X	X	X	9.5 to 12 V	820

Notes

1. When switch (S1) is closed the delay time is increased by 37 ns .
2. Where : $\mathrm{X}=$ connection closed; $0=$ connection open

PACKAGE OUTLINE

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	$\begin{gathered} \mathbf{A}_{1} \\ \text { min. } \end{gathered}$	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	w	$\begin{gathered} \mathbf{Z}^{(1)} \\ \max . \end{gathered}$
mm	4.7	0.51	3.7	$\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & \hline 21.8 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.3 \end{aligned}$	0.254	0.85
inches	0.19	0.020	0.15	$\begin{aligned} & 0.055 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$	0.01	0.033

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT102-1				\square	$\begin{aligned} & -93-10-14 \\ & 95-01-23 \end{aligned}$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

