DATA SHEET

TDA3605Q
 Multiple voltage regulator with switch

Preliminary specification
File under Integrated Circuits, IC01

FEATURES

- Two V_{P}-state controlled regulators (regulator 1 and regulator 3) and a power switch
- Regulator 2, reset and ignition buffer operates during load dump and thermal shutdown
- Separate control pins for switching regulator 1 , regulator 3 and the power switch
- Supply voltage range of -18 to +50 V (operating from 11 V)
- Low reverse current of regulator 2
- Low quiescent current (when regulator 1, regulator 3, and power switch are switched off)
- Hold output (only valid when regulator 1 is switched on)
- Reset and hold outputs (open collector outputs)
- Adjustable reset delay time
- High ripple rejection
- Back-up capacitor for regulator 2.

PROTECTIONS

- Reverse polarity safe (down to -18 V without high reverse current)
- Able to withstand voltages up to 18 V at the outputs (supply line may be short-circuited)
- ESD protected on all pins
- Thermal protection
- Local thermal protection for power switch
- Load dump protection
- Foldback current limit protection for regulators 1, 2 and 3
- Delayed second current limit protection for the power switch (at short-circuit)
- The regulator outputs and the power switch are DC short-circuited safe to ground and V_{P}.

GENERAL DESCRIPTION

The TDA3605Q is a multiple output voltage regulator with a power switch, intended for use in car radios with or without a microcontroller. It contains:

1. Two fixed voltage regulators with a foldback current protection (regulator 1 and regulator 3) and one fixed voltage regulator (regulator 2), intended to supply a microcontroller, that also operates during load dump and thermal shutdown.
2. A power switch with protections, operated by an enable input.
3. Reset and hold outputs can be used to interface by the microcontroller. The reset signal can be used to call up the microcontroller and the hold output indicates regulator 1 voltage available and within range.
4. A supply pin which can withstand load dump pulses and negative supply voltage.
5. Regulator 2 will be switched on at a supply voltage $>6.5 \mathrm{~V}$ and off at a voltage of regulator $2<1.9 \mathrm{~V}$.
6. Also there is a provision for use of a reserve supply capacitor that will hold enough energy for regulator 2 (5 V continuous) to allow a microcontroller to prepare for loss of voltage.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA3605Q	DBS13P	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	SOT141-6

Multiple voltage regulator with switch

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage operating reverse battery regulator 2 on jump start load dump protection	$t \leq 10$ minutes during $\leq 50 \mathrm{~ms} ; \mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\left\lvert\, \begin{aligned} & 11 \\ & -18 \\ & 2.4 \\ & - \\ & - \end{aligned}\right.$	14.4 14.4	$\begin{aligned} & 18 \\ & - \\ & 18 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{q}(\text { (tot) }}$	total quiescent supply current	standby mode	-	500	600	$\mu \mathrm{A}$
T_{j}	junction temperature		-	-	150	${ }^{\circ} \mathrm{C}$
Voltage regulators						
$\mathrm{V}_{\text {REG1 }}$	output voltage regulator 1	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 1} \leq 600 \mathrm{~mA}$	9.5	10.0	10.5	V
$\mathrm{V}_{\text {REG2 }}$	output voltage regulator 2	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 2} \leq 300 \mathrm{~mA} ; \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V}$	4.75	5.0	5.25	V
$\mathrm{V}_{\text {REG3 }}$	output voltage regulator 3	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 3} \leq 400 \mathrm{~mA}$	4.75	5.0	5.25	V
Power switch						
$\mathrm{V}_{\text {sw(d) }}$	drop-out voltage	$\mathrm{l}_{\text {sw }}=1 \mathrm{~A}$	-	0.45	0.7	V
		$\mathrm{I}_{\mathrm{sw}}=1.8 \mathrm{~A}$	-	1	1.8	V
$\mathrm{I}_{\text {swM }}$	peak current		3	-	-	A

BLOCK DIAGRAM

Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
V_{P}	1	supply voltage
REG1	2	regulator 1 output
REG3	3	regulator 3 output
$\mathrm{V}_{\text {en3 }}$	4	enable input regulator 3
RES	5	reset output voltage
$\mathrm{V}_{\text {en1 }}$	6	enable input regulator 1
$\mathrm{V}_{\text {en }}$ sw)	7	enable input power switch
$\mathrm{V}_{\text {hold }}$	8	hold output
V_{C}	9	reset delay capacitor
GND	10	ground (0 V)
REG2	11	regulator 2 output
$\mathrm{V}_{\text {bu }}$	12	back-up
$\mathrm{V}_{\text {sw }}$	13	power switch output voltage

FUNCTIONAL DESCRIPTION

The TDA3605Q is a multiple output voltage regulator with a power switch, intended for use in car radios with or without a microcontroller. Because of low-voltage operation of the car radio, low-voltage drop regulators are used in the TDA3605Q.

Regulator 2 will switch-on when the back-up voltage exceeds 6.5 V for the first time and will switch-off again when the output voltage of regulator 2 is below 1.9 V (this is far below an engine start). When regulator 2 is switched on and the output voltage of this regulator is within its voltage range, the reset output will be enabled (reset will go HIGH via a pull-up resistor) to generate a reset to the microcontroller. The reset cycles can be extended by an external capacitor at pin 9 . The above mentioned start-up feature is built-in to secure a smooth start-up of the microcontroller at first connection, without uncontrolled switching of regulator 2 during the start-up sequence.

The charge of the back-up capacitor can be used to supply regulator 2 for a short period when the supply falls to 0 V (time depends on value of storage capacitor). When both regulator 2 and the supply voltage ($\mathrm{V}_{\mathrm{P}}>4.5 \mathrm{~V}$) are available, regulators 1 and 3 can be operated by means of enable inputs (pins 6 and 4 respectively).

Fig. 2 Pin configuration.

Regulator 1 has a hold output (open collector) indicating that the output voltage of this regulator is settled (held HIGH by external pull-up resistor) and when the output voltage of this regulator drops out of regulation (because of supply voltage drop or high load) the hold output will go LOW. The hold output signal is only valid when regulator 1 is enabled by its enable input (pin 6).
The power switch can also be controlled by means of a separate enable input (pin 7).

All output pins are fully protected. The regulators are protected against load dump (regulator 1 and 3 will switch off at supply voltages $>18 \mathrm{~V}$) and short-circuit (foldback current protection).

The switch contains a current protection, but this protection is delayed at short-circuit condition for at least 10 ms . During this time the output current is limited to a peak value of at least 3 A and $2 \mathrm{~A}(\mathrm{DC})\left(\mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}\right)$. At supply voltages $>17 \mathrm{~V}$ the switch is clamped at maximum 16 V (to avoid external connected circuitry being damaged by an overvoltage) and the switch will switch-off at load dump.

The total timing of a semi on/off logic set is shown in Fig.3.

V_{P} and enable Schmitt-trigger

Fig. 3 Timing diagram.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{P}	supply voltage operating jump start load dump protection	$\mathrm{t} \leq 10$ minutes during $\leq 50 \mathrm{~ms} ; \mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$		$\begin{aligned} & 18 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{P}	reverse battery voltage	non-operating	-	-18	V
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	62	W
$\mathrm{T}_{\text {stg }}$	storage temperature	non-operating	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	operating	-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	operating	-40	+150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j-\mathrm{c}}$	thermal resistance from junction to case	2	K/W
$R_{\text {th } j-\mathrm{a}}$	thermal resistance from junction to ambient in free air	50	K/W

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see Fig.6; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage operating regulator 2 on jump start load dump protection	note 1 $\mathrm{t} \leq 10$ minutes during $\leq 50 \mathrm{~ms}$; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\left\lvert\, \begin{aligned} & 11 \\ & 2.4 \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 14.4 \\ & 14.4 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{q}	quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=12.4 \mathrm{~V} ; \text { note } 2 ; \\ & \mathrm{I}_{\mathrm{R} 2}=0.1 \mathrm{~mA} \end{aligned}$	-	500	600	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \text { note } 2 ; \\ & \mathrm{I}_{\mathrm{R} 2}=0.1 \mathrm{~mA} \end{aligned}$	-	520	-	$\mu \mathrm{A}$
Schmitt-trigger power supply for switch, regulator 1 and regulator 3						
$\mathrm{V}_{\text {thr }}$	rising voltage threshold		4.0	4.5	5.0	V
$\mathrm{V}_{\text {thf }}$	falling voltage threshold		3.5	4.0	4.5	V
$\mathrm{V}_{\text {hys }}$	hysteresis		-	0.5	-	V
Schmitt-trigger power supply for regulator 2						
$\mathrm{V}_{\text {thr }}$	rising voltage threshold		6.0	6.5	7.1	V
$\mathrm{V}_{\text {thf }}$	falling voltage threshold		1.7	1.9	2.2	V
$\mathrm{V}_{\text {hys }}$	hysteresis		-	4.6	-	V

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Schmitt-trigger for enable input (regulator 1, regulator 3 and switch)						
$\mathrm{V}_{\text {thr }}$	rising voltage threshold		1.7	2.2	2.7	V
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold		1.5	2.0	2.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis		$\mathrm{I}_{\mathrm{REG}}=\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA}$	0.1	0.2	0.5
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{en}}=5 \mathrm{~V}$	1	5	10	V

Schmitt-trigger for reset buffer

$\mathrm{V}_{\text {thr }}$	rising voltage threshold of regulator 2	V_{P} rising; $\mathrm{I}_{\mathrm{REG} 1}=50 \mathrm{~mA} ;$ note 3	-	$\mathrm{V}_{\mathrm{REG} 2}-0.15$	$\mathrm{~V}_{\mathrm{REG} 2}-0.075$	V
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold of regulator 2	V_{P} rising; $\mathrm{I}_{\mathrm{REG} 1}=50 \mathrm{~mA} ;$ note 3	4.3	$\mathrm{~V}_{\mathrm{REG} 2}-0.35$	-	V
$\mathrm{V}_{\text {hys }}$	hysteresis		0.1	0.2	0.3	V

Schmitt-trigger for hold

$\mathrm{V}_{\text {thr }}$	rising voltage threshold of regulator 1	V_{P} rising; note 3	-	$\mathrm{V}_{\mathrm{REG} 1}-0.15$	$\mathrm{~V}_{\mathrm{REG} 1}-0.075$	V
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold of regulator 1	V_{P} rising; note 3	9.2	$\mathrm{~V}_{\mathrm{REG} 1}-0.35$	-	V
$\mathrm{V}_{\text {hys }}$	hysteresis		0.1	0.2	0.3	V

Reset and hold buffer

$I_{\text {Lsink }}$	LOW level sink current	$\mathrm{V}_{\mathrm{RES} / \text { hold }} \leq 0.8 \mathrm{~V}$	2	-	-	mA
$\mathrm{I}_{\text {LO }}$	output leakage current	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ;$ $\mathrm{V}_{\mathrm{RES} / \text { hold }}=5 \mathrm{~V}$	-	16	32	$\mu \mathrm{~A}$
t_{r}	rise time	note 4	note 4	-	7	50
t_{f}	fall time	-	1	50	$\mu \mathrm{~s}$	

Reset delay

I_{ch}	charge current		2	4	8	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {dch }}$	discharge current		500	800	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {thr }}$	rising voltage threshold		2.5	3.0	3.5	V
t_{d}	delay time	$\mathrm{C}=47 \mathrm{nF} ;$ note 5	20	35	70	ms

Regulator 1 ($\mathrm{I}_{\mathrm{REG} 1}=5 \mathrm{~mA}$)

$\mathrm{V}_{\text {REG1 }}$ (off)	output voltage off		-	1	400	mV
$\mathrm{V}_{\text {REG1 }}$	output voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 1} \leq 600 \mathrm{~mA}$	9.5	10.0	10.5	V
		$11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	9.5	10.0	10.5	V
$\Delta \mathrm{V}_{\text {REG1 }}$	line regulation	$11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	2	75	mV
$\Delta \mathrm{V}_{\text {REGL1 }}$	load regulation	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 1} \leq 600 \mathrm{~mA}$	-	20	50	mV
I_{q}	quiescent current	$\mathrm{I}_{\mathrm{R} 1}=600 \mathrm{~mA}$	-	25	60	mA
SVRR1	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{kHzz} ; \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=2 \mathrm{~V}$	60	70	-	dB
$\mathrm{V}_{\text {REGd1 }}$	drop-out voltage	$\mathrm{I}_{\text {REG1 }}=550 \mathrm{~mA}$; $V_{P}=9.5 \mathrm{~V}$; note 6	-	0.4	0.7	V
$\mathrm{I}_{\text {REGm1 }}$	current limit	$\mathrm{V}_{\text {REG } 1}>8.5 \mathrm{~V}$; note 7	0.65	1.2	-	A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}_{\text {REGsc1 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 8	250	800	-	mA
Regulator 2 ($\mathbf{I R E G 2}^{\text {e }} \mathbf{5} \mathbf{~ m A}$)						
$\mathrm{V}_{\text {REG2 }}$	output voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 150 \mathrm{~mA}$	4.75	5.0	5.25	V
		$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 300 \mathrm{~mA}$	4.75	5.0	5.25	V
		$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	4.75	5.0	5.25	V
		$\begin{aligned} & 18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 50 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{REG} 2} \leq 150 \mathrm{~mA} \end{aligned}$	4.75	5.0	5.25	V
$\Delta \mathrm{V}_{\text {REG2 }}$	line regulation	$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	2	50	mV
		$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 50 \mathrm{~V}$	-	15	75	mV
$\Delta \mathrm{V}_{\text {REGL2 }}$	load regulation	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 150 \mathrm{~mA}$	-	20	50	mV
		$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 300 \mathrm{~mA}$	-	-	100	mV
SVRR2	supply voltage ripple rejection	$\mathrm{f}=3 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=2 \mathrm{~V}$	60	70	-	dB
$\mathrm{V}_{\text {REGd2 }}$	drop-out voltage	$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{REG} 2}=100 \mathrm{~mA} ; \\ \mathrm{V}_{\mathrm{P}}=4.75 \mathrm{~V} ; \text { note } 6 \\ \hline \end{array}$	-	0.4	0.6	V
		$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{REG} 2}=200 \mathrm{~mA} ; \\ \mathrm{V}_{\mathrm{P}}=5.75 \mathrm{~V} \text {; note } 6 \\ \hline \end{array}$	-	0.8	1.2	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 2}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{bu}}=4.75 \mathrm{~V} \text {; note } 7 \\ & \hline \end{aligned}$	-	0.2	0.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 2}=200 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{bu}}=5.75 \mathrm{~V} ; \text { note } 7 \end{aligned}$	-	0.8	1.0	V
$\mathrm{I}_{\text {REGm2 }}$	current limit	$\mathrm{V}_{\text {REG2 }}>4.5 \mathrm{~V}$; note 7	0.32	0.37	-	A
I ${ }_{\text {REGsc2 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 8	20	100	-	mA

Regulator 3 (IREG3 $=5 \mathrm{~mA}$)

$V_{\text {REG3 (off) }}$	output voltage off		-	1	400	mV
$\mathrm{V}_{\text {REG3 }}$	output voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 3} \leq 400 \mathrm{~mA}$	4.75	5.0	5.25	V
		$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	4.75	5.0	5.25	V
$\Delta \mathrm{V}_{\text {REG3 }}$	line regulation	$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	2	50	mV
$\Delta \mathrm{V}_{\text {REGL3 }}$	load regulation	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 3} \leq 400 \mathrm{~mA}$	-	20	50	mV
I_{q}	quiescent current	$\mathrm{I}_{\mathrm{R} 3}=400 \mathrm{~mA}$	-	15	40	mA
SVRR3	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=2 \mathrm{~V}$	60	70	-	dB
$\mathrm{V}_{\text {REGd3 }}$	drop-out voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 3}=400 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{P}}=5.75 \mathrm{~V} ; \text { note } 6 \end{aligned}$	-	1	1.5	V
IREGm3	current limit	$\mathrm{V}_{\text {REG3 }}>4.5 \mathrm{~V}$; note 7	0.45	0.70	-	A
$\mathrm{I}_{\text {REGsc3 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 8	100	400		mA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power switch						
$\mathrm{V}_{\text {swd }}$	drop-out voltage	$\mathrm{I}_{\mathrm{sw}}=1 \mathrm{~A}$; note 10	-	0.45	0.7	V
		$\mathrm{I}_{\text {sw }}=1.8 \mathrm{~A}$; note 10	-	1.0	1.8	V
$\mathrm{I}_{\mathrm{sw} \text { (dc) }}$	continuous current	$\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{V}_{\text {SW }}=13.5 \mathrm{~V}$	1.8	2.0	-	A
$\mathrm{V}_{\text {swcl }}$	clamping voltage	$\mathrm{V}_{\mathrm{P}} \geq 17 \mathrm{~V}$	13.5	15.0	16.0	V
$\mathrm{I}_{\text {swM }}$	peak current	$\mathrm{V}_{\mathrm{P}}=17 \mathrm{~V} ;$ notes 11 and 12	3	-	-	A
$\mathrm{V}_{\text {swfb }}$	fly back voltage behaviour	$\mathrm{I}_{\text {sw }}=-100 \mathrm{~mA}$	-	$V_{P}+3$	22	V
$\mathrm{l}_{\mathrm{sw} \text { (sc) }}$	short-circuit current	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{sw}} \leq 1.2 \mathrm{~V} ;$ note 12	-	0.8	-	A
Back-up switch						
$\mathrm{I}_{\text {bu(DC) }}$	continuous current		0.3	0.35	-	A
$\mathrm{V}_{\text {bucl }}$	clamping voltage	$V_{P} \geq 16.7 \mathrm{~V}$	-	-	16	V
V_{r}	reverse current	$\mathrm{V}_{\mathrm{P}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{b} u}=12.4 \mathrm{~V}$	-	-	900	ms

Notes

1. Minimum operating voltage, only if V_{P} has exceeded 6.5 V .
2. The quiescent current is measured in the standby mode. So, the enable inputs of regulators 1 and 3 and the switch are grounded and R2 $=\infty$ (see Fig.6).
3. The voltage of the regulator sinks as a result of a V_{P} drop.
4. The rise and fall times are measured with a $10 \mathrm{k} \Omega$ pull-up resistor and a 50 pF load capacitor.
5. The delay time depends on the value of the capacitor:

$$
\mathrm{t}_{\mathrm{d}}=\frac{\mathrm{C}}{\mathrm{I}_{\mathrm{ch}}} \times \mathrm{V}_{\mathrm{C}(\mathrm{th})}=\mathrm{C} \times\left(750 \times 10^{3}\right)(\mathrm{ms})
$$

6. The drop-out voltage of regulators 1,2 and 3 is measured between V_{P} and $V_{\text {REGn }}$.
7. At current limit, $I_{\text {REGmn }}$ is held constant (see Fig. 4 for behaviour of $I_{R E G m n}$).
8. The foldback current protection limits the dissipated power at short-circuit (see Fig.4).
9. The peak current of 300 mA can only be applied for short periods ($\mathrm{t}<100 \mathrm{~ms}$).
10. The drop-out voltage of the power switch is measured between V_{P} and $V_{s w}$.
11. The maximum output current of the switch is limited to 1.8 A when the supply voltage exceeds 18 V .

A test-mode is built-in. The delay time of the switch will be disabled when a voltage of $V_{P}+1 \mathrm{~V}$ is applied to the switch enable input.
12. At short circuit, $\mathrm{I}_{\mathrm{sw}(\mathrm{sc})}$ of the power switch is held constant to a lower value than the continuous current after a delay of at least 10 ms . A test-mode is built-in. The delay time of the switch will be disabled when a voltage of $\mathrm{V}_{\mathrm{p}}+1 \mathrm{~V}$ is applied to the switch enable input.

Fig. 4 Foldback current protection of the regulators.

$\mathrm{V}_{\mathrm{SW}} \geq 5 \mathrm{~V}$.
Fig. 5 Current protection of the power switch.

TEST AND APPLICATION INFORMATION

Test information

(1) Capacitor not required for stability.

Fig. 6 Test circuit.

Application information

NOISE
Table 1 Noise figures

REGULATOR	NOISE FIGURE $(\mu \mathrm{V})^{(1)}$		
	at OUTPUT CAPACITOR		
	$\mathbf{1 0} \mu \mathbf{F}$	$\mathbf{4 7} \mu \mathbf{F}$	$\mathbf{1 0 0} \mu \mathbf{F}$
1	-	150	-
2	-	150	-
3	-	200	-

Note

1. Measured at a bandwidth of 200 kHz .

The noise on the supply line depends on the value of the supply capacitor and is caused by a current noise (output noise of the regulators is translated into a current noise by means of the output capacitors).

When a high frequency capacitor of 220 nF in parallel with an electrolytic capacitor of $100 \mu \mathrm{~F}$ is connected directly to pins 3 and 8 (supply and ground) the noise is minimal.

Stability

The regulators are made stable with the externally connected output capacitors. The value of the output capacitors can be selected by referring to the graphs illustrated in Figs 7 and 8.

When an electrolytic capacitor is used the temperature behaviour of this output capacitor can cause oscillations at cold temperature.

The following two examples explain how an output capacitor value is selected.

Example 1

Regulator 1 is made stable with an electrolytic output capacitor of $220 \mu \mathrm{~F}(\mathrm{ESR}=0.15 \Omega)$. At $-30^{\circ} \mathrm{C}$ the capacitor value is decreased to $73 \mu \mathrm{~F}$ and the ESR is increased to 1.1Ω. The regulator will remain stable at $-30^{\circ} \mathrm{C}$.

Example 2

Regulator 2 is made stable with a $10 \mu \mathrm{~F}$ electrolytic capacitor (ESR $=3 \Omega$). At $-30^{\circ} \mathrm{C}$ the capacitor value is decreased to $3 \mu \mathrm{~F}$ and the ESR is increased to 23.1Ω. The regulator will be unstable at $-30^{\circ} \mathrm{C}$ (see Fig.7).

Solution

Use a tantalum capacitor of $10 \mu \mathrm{~F}$ or a large electrolytic capacitor. The use of tantalum capacitors is recommended to avoid problems with stability at cold temperatures.

PACKAGE OUTLINE

DBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)
SOT141-6

DIMENSIONS (mm are the original dimensions)

UNIT	A	A_{2}	b_{p}	c	$D^{(1)}$	d	D_{h}	$E^{(1)}$	e	e_{1}	e_{2}	E_{h}	J	L	L_{3}	m	Q	v	w	x	$\mathrm{Z}^{(1)}$
mm	$\begin{aligned} & 17.0 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 19.6 \end{aligned}$	10	$\begin{aligned} & 12.2 \\ & 11.8 \end{aligned}$	3.4	1.7	5.08	6	$\begin{aligned} & 3.4 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.6 \end{aligned}$	4.3	$\begin{aligned} & 2.1 \\ & 1.8 \end{aligned}$	0.8	0.25	0.03	$\begin{aligned} & 2.00 \\ & 1.45 \end{aligned}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT141-6				$\square \oplus$	$\begin{aligned} & 92-11-17 \\ & 95-03-11 \end{aligned}$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43160101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +70957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

