TDA1576T

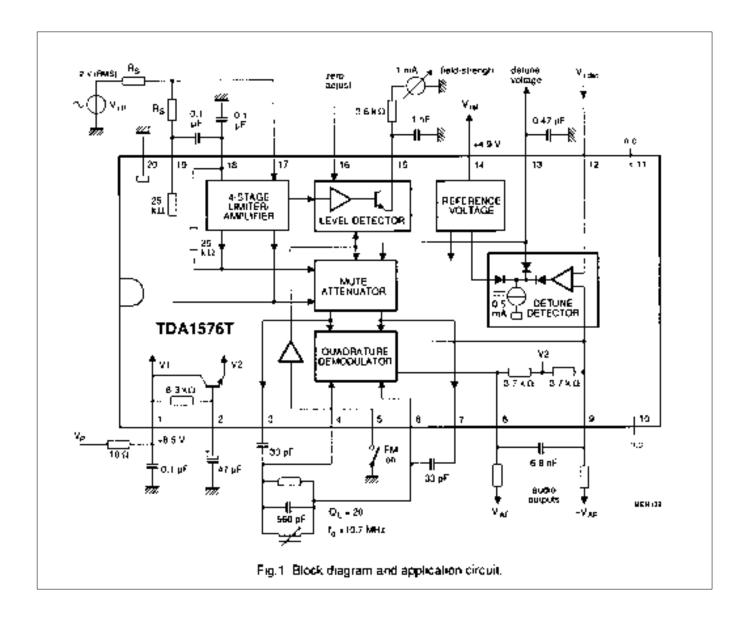
FEATURES

- Fully balanced 4-stage limiting IF amplifier
- Symmetrical quadrature demodulator
- Field-strengh indication output for 1 mA ammeter
- Detune detector for side response and house attenuation
- Detene vo:lage output
- Internal muting circuit
- 0° and 180° AF output signals.
- Reference voltage output
- Electromic smoothing of the supply voltage

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT
V _i	anbhy kojjaĝe raude (bru , i	7.5	8.5	15	٧
ι ₁ ,	supply corrent	10	16	23	mΑ
V_{dF}	input sensivity (RMS value)				
	–3 dB before limiting	14	22	35	μV
	S/N = 26 dB	-	10	-	μV
	S/N = 46 dB		55	-	μV
$V_{\phi A \Gamma}$	AF autput signal (RMS value)	-	67		ntV
1HD	local harmonic distortion with double resonant products		0 02		۹,
S/N	signal-to-noise ratio (V _i > 1 mV)		72		dB
16AM	AM suppression		50		₫₿
RR	rφpie rejection (f = 100 Hz)	43	48		d 8
1,5	maximum indicator output current	-		2	mA
Tamb	operating ambient temporature	-30	-	-80	eC.

GENERAL DESCRIPTION

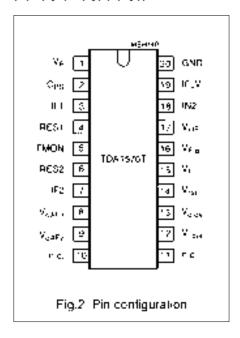

The TDA1576T is a monotithic integrated FM-IF amplifier circuit for use in mono and stereo FM-receivers of car radios or home sets.

ORDERING AND PACKAGE INFORMATION

EXTENDED			KAGE	CODE	
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
TDA1576T	20	mini-pack	plastic	SOT163A	

February 1991

TDA1576T


February 1991

TDA1576T

PINNING

SYMBOL	PIN	DESCRIPTION
V _P	1	positive supply voltage
CPS	2	smoothing capacitor of power supply
IF1	3	IF signal to resonant circuit
RES1	4	resonant circuit
FMON	5	FM-ON, standby switch
RES2	6	resonant circuit
IF2	7	IF signal to resonant circuit
VoiAF1	В	AF oulput voltage (D ⁰ phase)
V _{DIAF?}	9	AF output voltage (180º phase)
n.c.	10	not connected
nç	11	not connected
Viidel	12	delune detector input for external audio reference
V _{oldet}	13	detune detector output voltage
ν _{ιε} ,	14	reference voltage output
V _F	15	level output for field-strengh
V _{F o}	16	zero adjust for field-strengti
$\forall_{i,j,r}$	17	FM-IF input signal
IN2	18	npul 2 of differential IF amplifica
IFLV	19	IF input levoi
GND	20	ground (0 V)

PIN CONFIGURATION

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	MIN,	MAX.	UNIT
Vρ	supply voltage (pin 1)	٥	15	V
V2 5, 16	voltage on pins 2, 5, and 16	o	$V_{\mathbf{p}}$	٧
P ₁₀₁	total power dissipation	0	450	mW
T _{stg}	storage lemperature range	-55	15G	°C
T _{amb}	operating ambient temperature range	-30	+85	nC.

THERMAL RESISTANCE

SYMBOL	PARAMETER	MINL	MAX.	UNIT
R _{linja}	from junction to ambient in free air		85	K/W

TDA1576T

CHARACTERISTICS

 $V_P=0.5~V; f_{CP}=10.7~MHz; R_S=60~\Omega; f_m=400~Hz$ with $\Delta f=\pm22.5~kHz; 50~\mu s$ de-emphasis (C8.9 = 6.8 nF). $T_{amb}=25~^{\circ}C$ and measurements taken in Fig.1, unless otherwise specified. The demodulator discortion for $V_{CP}=1~mV$ and a deviation of $T_{CP}=7.5~kHz$

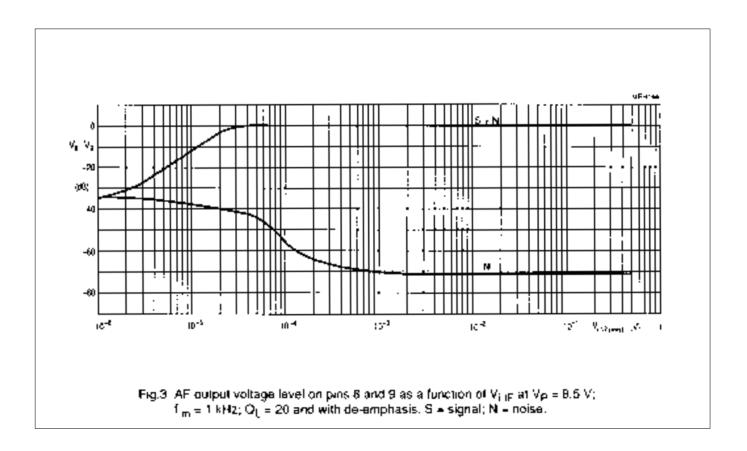
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP	MAX.	UNIT
Vρ	supply voltage range (pin 1)		7 5	8.5	15	٧
lp.	supply current	$V_{5} = V_{0} = V_{13} = 0$	10	16	23	mА
Reference	voltage					
V _{re1}	reference voltage (pin 14)	$I_{14} = -1 \text{ mA}$	-	4,9		V
∆V _{ie1}	/eference voltage dependence on semperature	ΔV ₁₄ / V ₁₄ -ΔT		0.3		%/K
I ₁₄	maximum output current	shed-circuit current	4	6	7.5	mA
A ₁₄	output resistor (ΔV ₁₄ /Al ₁₄)	I ₁₄ < 1.2 mA		60	150	Ω
IF amplifie) r		· ·	-	1	•
V _{e pe}	input sensivity (RMS value, pin 17)	-3 dB before limiting	14	22	35	μV
R _{17 16}	input resistance	V _{i (F} = 200 mV (RMS)	10	-	-	kΩ
C ₁₇₋₁₈	input capacitance	V _{HF} = 200 mV (AMS)		5	-	pF
V _{a IF}	output signaf at pins 3 and 7 (peak-to-peak value)	Z _{3, 7} = 10 pF // 1MΩ	61П	680	750	mV
$R_{2.7}$	oulput impedance		200	250	300	13
Demodula	tor			·	•	
P4 6	input resistance		20	3п	4N	kΩ
C _{4 B}	input capacitance			1	25	pF
R _{a ⊕}	oulput impedance		2.9	3.7	4.5	ķΩ
V _{B. 9}	OC offset voltage on output pins at V ₄₋₆ = 0	$V_5 > 3 \text{ V or } V_{3,7} = 0$ or $V_{13} < 0.3 \text{ V}$		n	2100	mV
ΑΥ/Αφ	demodulator efficiency	$\Delta V_{B,9}/\Delta \phi$		40	-	mV/ 9
	demodulator efficiency dependent on supply voltage (note 1)	к		5.2	_	mV/ 4
V/V	DC voltage ratio	V ₈₊ V ₉ / 2+V ₂	0 653	0.667	u 680	V/V
ΑΨεΑΤ	dependence on temperature	$\Delta (V_9 + V_9 / 2 \cdot V_2) / \Delta I$		10.5	-	1/K
Freid-strer	ngh oulput					
V ₁₅	output voltage (Fig.4)	V _{i IF} = 0	0	0.1	0.25	V
		V _{i IF} = 1 mV (AMS)	1,1	1.5	1.9	٧
		$V_{\rm LIF} = 250 \text{mV} (RMS)$	3.2	3.6	4.1	V
S	control sleepness	Fig.4	-	0.85	-	V/dec
R ₁₅	output resistance			150	200	Ω
ΔV/ΔΤ	dependence on temporature	$V_{11F} = \delta V_{1S} / (\Delta T \cdot V_{1S})$		0.3		%/K
115	stand-by operational out-off current	V5 > 3 V: V15 = 0 to 5 V			10	μА

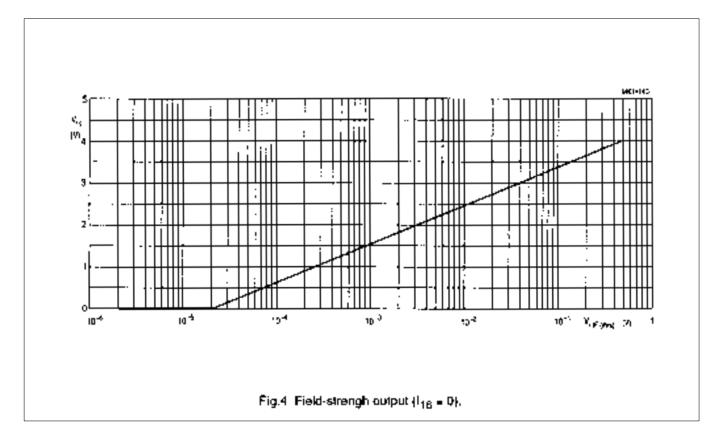
TDA1576T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zaro level	adjustment	1	1			1
V _{1G}	internal bias voltage		-	260	-	mV
Rié	input resistance			19	-	kΩ
S	control steepness	$V_{1.1F} = 100 \text{ mV};$ $A = \Delta V_{15} / \Delta V_{16}$	0.87	1.0	1.2	v/v
Detuning (detector			'		•
I ₁₂	input bias current		-	20	100	nA
R ₁₂	input resistance (Fig.5)	5 V/6I ₁₂	6	30		MΩ
V ₁₃ /V ₁₄	output voltage ratio for $\Delta \phi = \phi$ (pins 3-7) – ϕ (pins 4-6) –90°. (Fig.6)	$V_1 = V_2 = 7.5 \text{ V}$ $R_{13\cdot14} = 10 \text{ k}\Omega$; pins 9 and 12 short-circuit				
	$\Delta \phi = 9.2^{\circ} (43 \text{ kHz}), Q = 20$	V _{9, 12} = 334 mV	0.45	0.5	0.55	V/V
	$\Delta \phi = 3.5^{\circ}$ (16 kHz), $Q = 20$	V _{9, 12} = 138 mV	0.75	8.0	0.85	V/V
	$\Delta \varphi = 14^{\circ} (65 \text{ kHz}), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	V _{9, 12} = 501 mV	0 335	0.345	0.355	VV
113	maximum output current (Frg.7)	V ₁₃ = 6 V	0.4	0.5	0.6	mΑ
	cut-off current	V ₁₃ = 2.5 V; V _{9, 12} = 0	-	-	-100	nΑ
Internal ec	udio attenuation					
V ₁₃ /V ₁₄	output voltage ratio (Fig.\$)	α = attenuation factor				
	for α = 1 dB		0.11	0.12	0.13	
	for $\alpha = 7.2 \text{ dB}$		0.095	0.1	0.10\$	
	for a ≥ 40 dB		-	0.06	-	
113	input current	$V_{13} / V_{13} \le 0.1$	-	-	-225	nΑ
\$tand-by	switch			'		•
V ₅	input voltage for FM-on	$V_{3,7} / V_{3,7(\eta \text{vax})} = 0.9$	2.4	2.5	-	٧
	input voltage for FM-off	V ₁₉ = 0.3 V		2.9	3	٧
	linear range (Fig 9)			350		mΨ
I ₅	input current	V ₆ = 0 to 2 V	-	-	-100	μA
		V ₅ = 3.5 to 15 V		-	1	μΑ
V ₅ /Δ T	temperature dependence	FM-on (3.5V _{BE})		7	-	mV/K
-		FM-off (5VgE)		10	-	mV/K
Supply vo	itage smoothing		1		-1	1
V ₁₋₂	internal voltage drop	proportional to V ₁ −3V _{B€}	80	210	400	mV
R ₁₋₂	internal resistor		5.8	8.3	10.8	kΩ

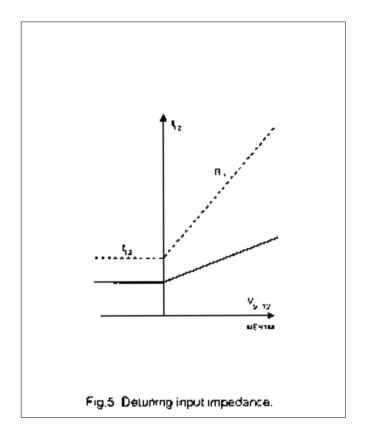
TDA1576T

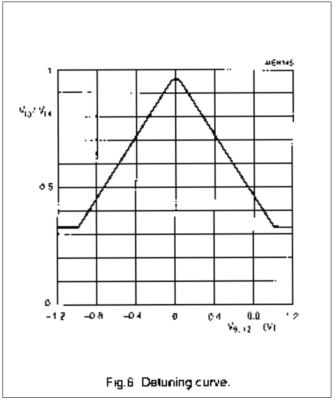
OPERATING CHARACTERISTICS

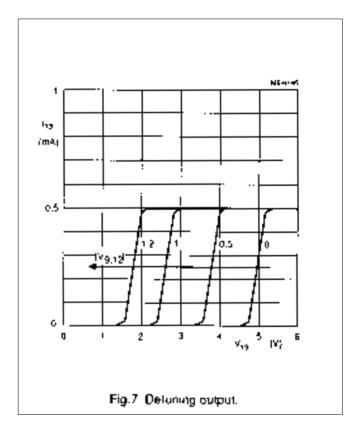

 $V_P = 8.5 \text{ V}$, $I_{CZF} = 10.7 \text{ MHz}$; $H_S = 60.32 \text{ I}_m = 400 \text{ Hz}$ with $\Delta I = 222.5 \text{ kHz}$, 50 µs de-emphasis ($C_{B/S} = 6.8 \text{ nF}$); $I_{amb} = 25 \text{ °C}$ and the surfements taken in Fig.1, unless otherwise specifics. The demodulator circuit is adjusted at minimum second harmonic distortion with $V_{CZF} = 1 \text{ mV}$.

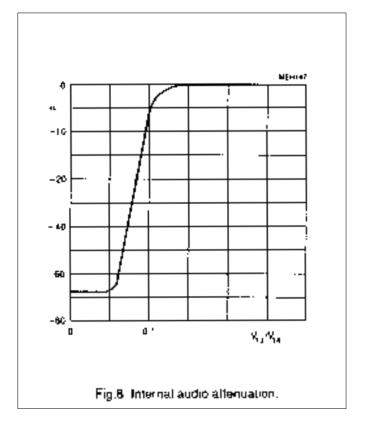

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IF amplilis	ar and demodulator					
$V_{\rm eff}$	input sensivity (RMS value, pin 17)	–3 dB before AF limiting	14	22	35	μ۷
	input signal for S/N = 26 dB	1 = 250 to 15000 Hz	-	10		μV
	input signat for S/N = 46 dB	I = 250 to 15000 Hz		55	-	μ۷
V _{e AF}	output signal at IRMS value, pink 8 and 3)		60	67	75	mV
V _{o N}	nd se voltage for V _{elF} = 0 (RMS value, pins S and 9)	R _S = 300 Ω f - 250 to 15000 Hz		900		μV
	weighted haise voltage according to	DIN 45405		2	-	mV
S:N	signal-to-noise ratio Fig 3 (pin 8 and 9)	V _{i IF} = 1 mV (RMS)		72	-	dB
¹⁷ AM	AM suppression	V _{i IF} = 0.5 to 200 mV FM -70 Hz, +15 kHz AM: 1 kHz, m = 30%		So	-	dB
14FV	FM rejection for FM-off	$V_{i,iF} = 500 \text{ mV}, V_5 = 3V$	90	-	-	d 9
4V ₈₋₉	AFC shift in relation to minimum second harmonic distortion (4 _{2m}	V _{eIF} = 0.03 to 500 mV	-	25		mV
	DC offset at second narmonic distortion	operating mule or FM-off		0	+100 150	mV mV
чэн	distortion for thire harmonic			0.65		%
ᄪ	ripple rejection V _{apple} = 200 mV on V _P	f = 100 Hz	43	48		dB

Note to the characteristics


 $1 + V_{8.9} \wedge \Delta m = K(V_p + 3, V_{BE})$


TDA1576T





TDA1576T

