COMPLETE TV SOUND CHANNEL

The TDA 1190Z is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It performs all the functions needed for the TV sound channel :

SGS-THOMSON MICROELECTRONICS

- IF LIMITER-AMPLIFIER
- ACTIVE LOW-PASS FILTER
- FM DETECTOR
- DC VOLUME CONTROL
- AF PREAMPLIFIER
- AF OUTPUT STAGE

DESCRIPTION

The TDA 1190Z can give an output power of 4.2 W (d = 10 %) into a 16 Ω load at V_s = 24 V, or 1.5 W (d = 10 %) into an 8 Ω load at V_s = 12 V. This performance, together with the FM-IF section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in almost every type of television receivers.

The device has no irradiation problems, hence no external screening is needed.

CONNECTION DIAGRAM (top view)

FINDIP 12

ORDER CODE : TDA1190Z

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage (pin 10)	28	V
Vi	Input Signal Voltage (pin 1)	1	V
١.,	Output Peak current (non-repetitive)	2	A
I _o	Output Peak Current (repetitive)	1.5	A
Ptot	Power Dissipation : at T _{tab} = 90 °C at T _{amb} = 80 °C (free air)	5	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

R _{th j-tab}	Thermal Resistance Junction-tab	Max	12	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	70°	°C/W

* Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (refer to the test circuit ; $V_s = 24$ V, $T_{amb} = 25$ °C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 10)		9		28	V
Vo	Quiescent Output Voltage (pin 9)	$V_{s} = 24 V$ $V_{s} = 12 V$	11 5.1	12 6	13 6.9	V V
ld	Quiescent Drain Current	$P_{1} = 22 k\Omega$ $V_{s} = 24 V$ $V_{s} = 12 V$	11	22 19	45 40	mA mA
Po	Output Power			4.2 1.5		w

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
Po	Output Power		$f_{m} = 400 \text{ Hz}$ $\Delta f = \pm 25 \text{ kHz}$ $R_{L} = 16 \Omega$ $R_{L} = 8 \Omega$		3.5 1.4		W W
Vi	Input Limiting Voltage (- 3 dB) at Pin 1	f _o = 4.5 MHz	$f_m = 400 \text{ Hz}$ $P_1 = 0$ $\Delta f = \pm 7.5 \text{ kHz}$		40	100	μV
d	Distortion	$P_{o} = 50 \text{ mW}$ $f_{o} = 4.5 \text{ MHz}$ $V_{s} = 24 \text{ V}$ $V_{s} = 12 \text{ V}$	$f_m = 400 \text{ Hz}$ $\Delta f = \pm 7.5 \text{ kHz}$ $R_L = 16 \Omega$ $R_L = 8 \Omega$		0.75 1		% %
В	Frequency Response of Audio Amplifier (- 3 dB)		$C_{10} = 120 \text{ pF}$ $P_1 = 22 \text{ k}\Omega$	70 to 12000 70 to 7000			Hz Hz
Vo	Recovered Audio Voltage (pin. 12)	$V_i \ge 1 \text{ mV}$ $f_m = 400 \text{ Hz}$ $P_4 = 0$	f _o = 4.5 MHz ∆f = ± 7.5 kHz		120		mV
AMR	Amplitude Modulation Rejection	$V_i \ge 1 \text{ mV}$ $f_m = 400 \text{ Hz}$ $m = 0.3$	$f_0 = 4.5 \text{ MHz}$ $\Delta_f = \pm 25 \text{ kHz}$		55		dB
$\frac{S + N}{N}$	Signal to Noise Ratio	$V_i \ge 1 \text{ mV}$ $f_o = 4.5 \text{ MHz}$ $\Delta f = \pm 25 \text{ kHz}$	V _o = 4 V f _m = 400 Hz	50	65		dB
R	External Feedback Resistance (between pins 7 and 9)					25	kΩ
Ri	Input Resistance (pin 1)	$V_i = 1 \text{ mV}$			30		kΩ
Ci	Input Capacitance (pin 1)	$f_0 = 4.5 \text{ MHz}$			5		pF
SVR	Supply Voltage Rejection	$ \begin{array}{c} R_{L} = 16 \ \Omega \\ f_{ripple} = 120 \ H \\ P_1 = 22 \ k \Omega \end{array} $	Z		46		dB
А	DC Volume Control Attenuation	$P_1 = 12 k\Omega$			90		dB

ELECTRICAL CHARACTERISTICS (continued)

Figure 1 : Relative Audio Output Voltage and Out-Noise vs. Input Signal.

Figure 5 : Recovered Audio Voltage vs. Unloaded Q Factor of the Detector Coil.

Figure 2 : Output Voltage Attenuation vs. DC Volume Control Resistance.

Figure 4 : AMR vs. Tuning Frequency Change.

Figure 6 : Distortion vs. Output Power.

Figure 7 : Distortion vs. Frequency Deviation.

Figure 9 : Audio Amplifier Frequency Response.

Figure 11 : Supply Voltage Ripple Rejection vs. Volume Control Attenuation.

Figure 8 : Distortion vs. Tuning Frequency Change.

Figure 10 : Supply Voltage Ripple Rejection vs. Ripple Frequency.

Figure 12 : Output Power vs. Supply Voltage.

Figure 13 : Maximum Power Dissipation vs. Supply Voltage (sine wave operation).

Figure 15 : Quiescent Output Voltage (pin 9) vs. Supply Voltage.

APPLICATION INFORMATION

The electrical characteristics of the TDA 1190Z remain almost constant over the frequency range of 4.5 to 6 MHz, therefore it can be used in all television standard (FM mod.). The TDA 1190Z has a high input impedance, so it can work with a ceramic filter or with a tuned circuit that provide the necessary input selectivity.

The value of the resistors connected to pin 7, determine the AC gain of the audio frequency amplifier. This enables the desired gain to be selected in relation to the frequency deviation at which the output stage of the AF amplifier must enter into clipping. The capacitor connected between pins 9 and 8 determines the upper cut-off frequency of the audio band. If larger bandwidth is required C_{10} , C_{12} must be reduced keeping C_{12}/C_{10} as in fig. 16.

The capacitor connected between pin 12 and ground, toghether with the internal resistor of 10 K Ω , forms the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by inductive load and the wires connecting the loud-speaker.

Figure 14 : Power Dissipation and Efficiency vs. Output Power.

MOUNTING INSTRUCTION

The $R_{th j-amb}$ of the TDA1190Z can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (fig. 18) or to an external heat-sink (fig. 19).

The diagram of figure 20 shows the maximum dissipable power P_{tot} and the R_{th} i-amb as a function of the side "I" of two equal square copper areas having a thickness of 35 μ (1.4 mils).

During soldering the tab temperature must not exceed 260 °C and the soldering time mumst not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 18 : Example of P.C. Board Copper Area Which is Used as Heatsink.

Figure 19 : External Heatsink Mounting Example.

Figure 20 : Maximum Dissipable Power and Junction to Ambient Thermal Resistance vs. Side "I".

Figure 21 : Maximum Allowable Power Dissipation vs. Ambient Temperature.

