SIEMENS

Window Discriminator

PreliminaryBipolar IC

Features

- Two window settings
- direct setting of lower and upper edge voltage (window edges)
- indirect setting by window center voltage and half window width
- Adjustable hysteresis
- Digital outputs with open collectors for currents up to 50 mA
- Adjustable reference voltage $V_{\text {Stab }}$

P-DIP-14-1

Type	Ordering Code	Package
TCA 965 B	Q67000-A8338	P-DIP-14-1
TCA 965 BG	Q67000-A8337	P-DSO-14-1 (SMD)

Not for new design

The window discriminator compares an input voltage to a defined voltage window. The digital outputs show whether the input voltage is below, within or above this window.
The TCA 965 B window discriminator is especially suitable as a tracking or compensating controller with a dead band in control engineering and for the selection of DC voltages within a certain tolerance of the required setpoint value in measurement engineering. When it is used as a Schmitt trigger, switching frequencies up to a typical value of 50 kHz are possible.

Functional Description

Amplifier Amp 3 increases the voltage of the reference source R to $V_{\text {Stad }}=2 \times V_{\text {REF }}$. The amplification factor can be altered by external wiring. With direct setting of the window, the input voltage appears on amplifier Amp $1\left(V_{8}\right)$, the upper edge voltage on comparator K2 (V_{6}) and the lower edge voltage on comparator K1 $\left(V_{7}\right)$.
With indirect setting of the window, the input voltage appears on inputs V_{6} and V_{7}, while the center voltage is connected to amplifier A1 $\left(V_{8}\right)$.
The voltage applied to the input $\left(V_{9}\right)$ of amplifier Amp 2 is subtracted symmetrically from the output voltage of amplifier Amp 1 and added. The comparators switch with hysteresis. The logic gates have open-collector outputs.
If the inhibit input A or B is connected to ground, output A or B will always be high.

Outputs A, B, C, D are open-collector

Block Diagram

Pin Configurations

(top view)

Pin Definitions and Functions

Pin	Symbol	Pin Function in	
		Direct Setting	Indirect Setting
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	GND A D Inhibit A $V_{\text {REF }}$	GND Logic output A Logic output D = A @ B (AND) Connected to GND: logic output A = HIGH Internal $V_{\text {REF }}=3 \mathrm{~V}$	
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & V_{6} \\ & V_{7} \\ & V_{8} \\ & V_{9} \end{aligned}$	Upper edge voltage Lower edge voltage Input voltage GND	Input voltage $V_{6 / 7}$ Input voltage $V_{6 / 7}$ Center voltage Half window width
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & V_{\text {Stab }} \\ & +V_{\mathrm{S}} \\ & \text { Inhibit B } \\ & \text { C } \\ & \text { B } \end{aligned}$	Internal $V_{\text {Stab }}=6 \mathrm{~V}$ Supply voltage Connected to GND: logic output B = HIGH Logic output C = A @ B (NAND) Logic output B	

Absolute Maximum Ratings

Maximum ratings for ambient temperature $T_{\mathrm{A}}=-25$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Supply voltage (pin 11) Difference in input voltage between pins 6, 7, 8 Input voltage (pins 6, 7, 8, 9)	$\begin{aligned} & V_{\mathrm{s}} \\ & V_{1} \\ & V_{1} \end{aligned}$		$\begin{aligned} & 30 \\ & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Output current (pins 2, 3, 13, 14)	$I_{\text {Q }}$		50	mA
Output voltage (pins 2, 3, 13, 14) independent of V_{S} Voltage on $V_{\text {ReF }}$ (pin 5)	$\begin{aligned} & V_{\mathrm{Q}} \\ & V_{\mathrm{R}} \end{aligned}$		$\begin{aligned} & 30 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Output current of stabilized voltage (pin 10)	I_{10}		10	mA
Inhibit input voltage (pins 4, 12)	$V_{\text {IH }}$		7	V
Junction temperature Storage temperature	$\begin{aligned} & T_{\mathrm{j}} \\ & T_{\mathrm{stg}} \end{aligned}$	-55	$\begin{aligned} & 150 \\ & 125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\begin{array}{ll}\text { Thermal resistance system - air } & \text { P-DIP-14-1 } \\ & \text { P-DSO-14-1 }\end{array}$	$\begin{aligned} & R_{\mathrm{th} \mathrm{SA}} \\ & R_{\mathrm{th} \mathrm{SA}} \end{aligned}$		$\begin{aligned} & 80 \\ & 125 \end{aligned}$	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Operating Range

Supply voltage	V_{S}	4.5	30	V
Ambient temperature	T_{A}	-25	85	${ }^{\circ} \mathrm{C}$

Characteristics

$V_{\mathrm{S}}=10 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Current consumption Input current (pins 6, 7, 8) Input current, pin 9	$\begin{aligned} & I_{\mathrm{S}} \\ & I_{1} \\ & -I_{1} \end{aligned}$		$\begin{aligned} & 5 \\ & 20 \\ & 400 \end{aligned}$	$\begin{aligned} & 7 \\ & 50 \\ & 3000 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$V_{2}, V_{13}=V_{\text {OH }}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Input offset voltage in direct setting of window Input offset voltage in indirect setting of window Input-voltage range on pins 6, 7, 8 Input-voltage range on pin 9 Differential input voltage Reference voltage Stabilized voltage on pin 10 TC of reference voltage Sensitivity of reference voltage to supply-voltage variation	V_{10} V_{10} V_{1} V_{1} $V_{6}-\left(V_{8}-V_{9}\right)$ $\left(V_{8}+V_{9}\right)-V_{7}$ V_{5} V_{10} αV_{5} $\Delta V_{5} / \Delta V_{\mathrm{s}}$	$\begin{aligned} & -20 \\ & -50 \\ & 1.5 \\ & 50 \\ & \\ & 2.8 \\ & 5.5 \end{aligned}$	6 0.4 2	20 50 $V_{\mathrm{S}}-1$ $V_{\mathrm{s}} / 2$ 13 13 3.2 6.5	$m V$ $m V$ V $m V$ V V V V $m V / K$ $m V / V$	$\Delta V_{1}<13 \mathrm{~V}$ $\begin{aligned} & I_{\text {REF }}=0 \\ & V_{\mathrm{S}}>7.9 \mathrm{~V} \end{aligned}$	2
Output reverse current	$I_{\text {OH }}$			10	$\mu \mathrm{A}$		
Output saturation voltage Hysteresis of window edges Inhibit threshold	V_{QL} $\begin{aligned} & V_{\mathrm{U}}-V_{\mathrm{L}} \\ & V_{4,12} \end{aligned}$	$\begin{aligned} & 18 \\ & 1 \end{aligned}$	$\begin{aligned} & 100 \\ & 500 \\ & 22 \end{aligned}$	$\begin{aligned} & 200 \\ & 800 \\ & \\ & 35 \\ & 1.8 \end{aligned}$	mV mV mV V	$\begin{aligned} & I_{\mathrm{Q}}=10 \mathrm{~mA} \\ & I_{\mathrm{Q}}=50 \mathrm{~mA} \end{aligned}$	1
Inhibit current	$I_{4,12}$		-100		$\mu \mathrm{A}$		
Switching frequency	$\begin{aligned} & f_{\text {fir }} \\ & f_{\text {ind }} \end{aligned}$		$\begin{aligned} & 20 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$		$\begin{array}{\|l} 1 \\ 2 \end{array}$

Test Circuit 1

Direct Setting of Window

Test Circuit 2
Indirect Setting of Window by Center Voltage and Half Window Width

Schematic Circuit Diagrams

To increase the switching frequency, pin 9 may be grounded vic $R_{7}\left(V_{9}\right.$ approx. $30 \ldots 40 \mathrm{mV}$).

Application Circuit 1

Direct Setting of Lower and Upper Edge Voltages

$V_{6}-V_{9}=$ Upper edge voltage
$V_{7}+V_{9}=$ Lower edge voltage
$V_{8}=\quad$ Input voltage

Definition of the Offset Voltage V_{10}
$V_{10}=\frac{V_{\mathrm{L}}+V_{\mathrm{U}}}{2}-V_{7}$

Application Circuit 1

Direct Setting of Lower and Upper Edge Voltages

Application Circuit 2

Indirect Setting of Window by Center Voltage and Half-Window Width V
$V_{6}=V_{7}=$ Input voltage
$V_{8}=\quad$ Center voltage
$V_{9}=\quad$ Half window width

Definition of the Offset Voltage V_{10}
$V_{10}=\frac{V_{\mathrm{L}}+V_{\mathrm{U}}}{2}-\left(V_{8}-V_{9}\right)$

Application Circuit 2

Indirect Setting of Window by Center Voltage and Half-Window Width V

Application Circuit 3

Symmetrically Enlarged Edge Hysteresis in Direct Setting of Window

Calculation of Hysteresis $\boldsymbol{V}_{\mathbf{H}}$
$V_{\mathrm{H}}=V_{10} \frac{R_{5}}{R_{4}+R_{5}}$
$\frac{V_{10}}{R_{4}+R_{5}}+\frac{V_{10}}{R_{1}+R_{2}+R_{3}} \leq 10 \mathrm{~mA}$

Application Circuit 4

Symmetrically Enlarged Edge Hysteresis in Indirect Setting of Window

Calculation of Hysteresis $\boldsymbol{V}_{\mathrm{H}}$
$V_{\mathrm{H}}=V_{9 / 2}-V_{9 / 1}$
$V_{9 / 1}=V_{10} \frac{R_{4} \| R_{5}}{R_{3}+R_{4} \| R_{5}}$
$V_{9 / 2}=V_{10} \frac{R_{4}}{R_{3}+R_{4}}$

