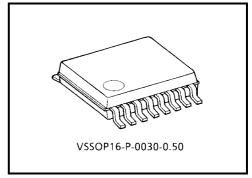
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

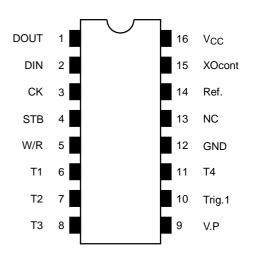

TC7MTX02FK

Digital temperature compensation IC

Due to the demand for compactness and lower power dissipation, circuits for portable devices are being manufactured as individual chips. In particular, during the manufacture of modular devices comprised of several individual discrete devices, significant time and effort must be devoted to adjusting the temperature characteristic of each discrete device individually, In addition, the demand for low power consumption is increasing.

In response to these requirements, Toshiba have developed a digital temperature compensation IC.

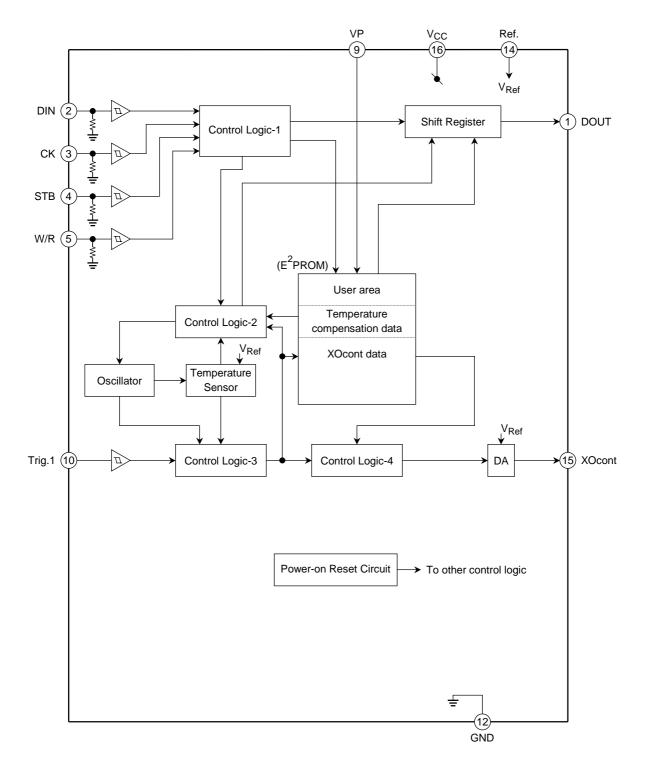
Toshiba have implemented this device completely in CMOS, obviating the need to use combinations of individual electronic components, such as thermistors and resistors, as was the case previously. The new digital temperature compensation IC incorporates a temperature sensor, an E^2PROM and a DA converter. The IC is accurate to within $\pm 6^{\circ}C$.


Weight: 0.02 g (typ.)

To meet the demand for compactness, the IC comes in the World's smallest and flattest 16-pin package (US16).

Features

- Temperature compensation precision: ±6°C (in the range -40~85°C)
- Analog output (XOcont):
- Outputs an analog voltage whose level corresponds to 2°C increments in the above temperature range. Control resolution: 10.98 mV (typ.)/Bit
 - Linearity: ±1LSB
 - Output response speed: 500 µs
- Supply voltage operating range: 2.7~3.6 V
- Built-in E²PROM : Write voltage 17 V (min)~19 V (max) : Write time: 10 ms
- Reference voltage (V_{Ref}): 2.8 V (typ.)
- Current dissipation: 1.0 mA (max) @25°C
- ESD: ±2000 V or more (MIL-STD method)
- Latch-up: ±200 mA or more


Pin Layout (top view)

Note: All pins (T1~T4) must be connected to the V_{CC} or the GND.

Block Diagram

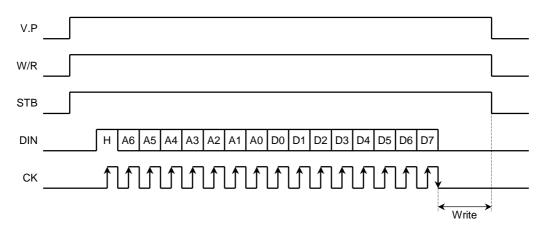
Pins 2~5 incorporate pull-down resistors (R \simeq 10 k Ω)

Description of Operation

Operation of E²PROM read/write OP codes

The operations listed below in the Operation mode selection table are performed using the five pins V.P, W/R, STB, CK and DIN.

All operations modes other than Normal Operation Mode are triggered by 8-bit serial data input on DIN and CK on the rising edge of STB. The operation mode is determined by the combination of the W/R signal and the OP code.

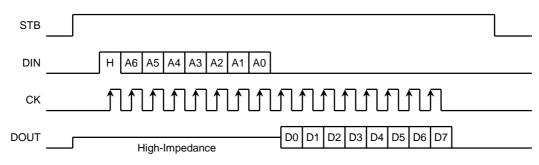

	Opera	tion mo	de sele	ction ta	ble							
No.	Operating Mode	STB	W/R	V.P			Seria	l input	on DIN	I (CK)		
INO.		515	VV/IX	•	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8
1	E ² PROM write mode	н	Н	18 V	Н	A6	A5	A4	A3	A2	A1	A0
2	E ² PROM read mode	н	L		Н	A6	A5	A4	A3	A2	A1	A0
3	E ² PROM All-erase mode	н	Н	18 V	L	Н	L	L	L	*	*	*
4	E ² PROM All-write overwrite mode	н	Н	18 V	L	Н	L	L	Н	*	*	*
5	Temperature data read mode (before compensation: ADC output)	н	L		L	Н	L	Н	L	*	*	*
6	Temperature data read mode (after compensation: register output)	н	L		L	Н	L	Н	Н	*	*	*
7	Normal operation mode	L	L		*	*	*	*	*	*	*	*

-: NC or V_{CC}, *: Don't care, A6~A0: specify address of E²PROM word

1. E²PROM Write Mode (V.P = 18 V, W/R = "H", DI1 = "H")

Input of an OP code (DI1 = H, A6~A0 = address of word to be written) on DIN (while 18 V is applied to V.P, W/R = H and STB = H) writes data D0~D7 to the E²PROM at the timing shown below.

Note that if D0~D7 are all High, a Byte Erase (all bits are set to H) is performed. The write starts on the falling edge of the 16th CK pulse and ends when STB goes Low. During a write, DOUT is High-Impedance.

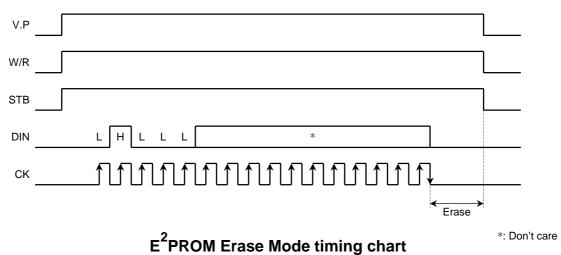


Data Write Mode timing chart

2. E^2 PROM Read Mode (W/R = "L", DI1 = "H")

Input of an OP code (DI1 = H, A6 \sim A0 = address of word to be read) on DIN (while W/R = L and STB = H) reads data D0 \sim D7 from the E²PROM to DOUT.

The read ends when STB goes Low.

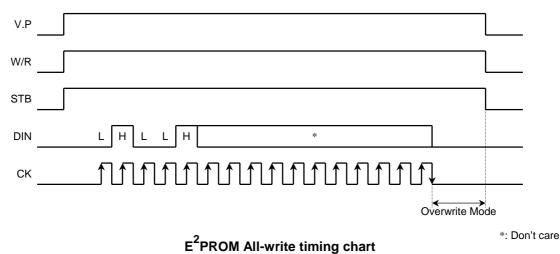


Data Read Mode timing chart

3. E²PROM All-erase Mode (V.P = 18 V, W/R = "H", DI1 = "L", DI2 = "H", DI3 = "L", DI4 = "L", DI5 = "L")

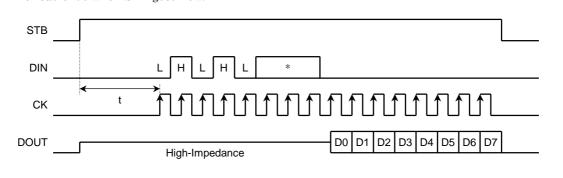
Input of an OP code (DI1 = L, DI2 = H, DI3 = L, DI4 = L, DI5 = L) to DIN (while 18 V is applied to V.P, W/R = H and STB = H) proceeds to erase all data in the E2PROM (all bits are set to H), starting on the falling edge of the 16th CK pulse and continuing until STB goes Low.

During Erase Mode, DOUT is High-Impedance.



4. E²PROM All-write Mode

(V.P = 18 V, W/R = "H", DI1 = "L", DI2 = "H", DI3 = "L", DI4 = "L", DI5 = "H")

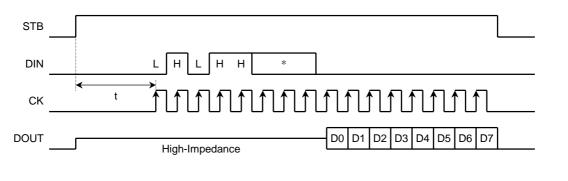

Input of an OP code (DI1 = L, DI2 = H, DI3 = L, DI4 = L, DI5 = H) on DIN (while 18 V is applied to V.P, W/R = H and STB = H) proceeds to overwrite the entire E²PROM (all bits are set to L), starting on the falling edge of the 16th CK pulse and continuing until STB goes Low.

During Overwrite Mode, DOUT is High-Impedance.

5. Temperature Data Read Mode (before compensation: temperature sensor output) (W/R = "L", DI1 = "L", DI2 = "H", DI3 = "L", DI4 = "H", DI5 = "L")

Input of an OP code (DI1 = L, DI2 = H, DI3 = L, DI4 = H, DI5 = L) on DIN converts the analog data from the temperature sensor to 8-bit digital data and outputs it on DOUT. The read ends when STB goes Low.

*: Don't care


Timing chart for Temperature Data Read Mode (pre-compensation)

Note 1: The temperature sensor is triggered on the rising edge of STB. Allow a period of length t to elapse so that operation can stabilize.

6. Temperature Data Read Mode (after compensation: register output) (W/R = "L", DI1 = "L", DI2 = "H", DI3 = "L", DI4 = "H", DI5 = "H")

Input of an OP code (DI1 = L, DI2 = H, DI3 = L, DI4 = H, DI5 = H) on DIN outputs an 8-bit address on DOUT corresponding to the current temperature (sum of 8-bit temperature sensor output and 25° C temperature compensation data sensor stored at E²PROM address 0FH).

The read ends when STB goes Low.

*: Don't care Timing chart for Temperature Data Read Mode (post-compensation)

Note 1: The temperature sensor is triggered on the rising edge of STB. Allow a period of length t to elapse so that operation can stabilize.

7. Normal Operation Mode (STB = "L")

While STB = L, all inputs on W/R, CK and DIN are invalid and the IC is in Normal Operation Mode (this is referred to as XOcont Output Control state).

During Normal Operation Mode, the DOUT output level reflects the power-on reset status. (Output level is High during power-on reset and Low after release of power-on reset.)

E²PROM Contents

The E^2 PROM is organized as 8 bits x 124 words (= 992 bits) and its contents is as shown below.

Word	d BIT						Word BIT							Word				В	Т							
(HEX)	0	1	2	3	4	5	6	7	(HEX)	0	1	2	3	4	5	6	7	(HEX)	0	1	2	3	4	5	6	7
00	Ŭ			rved f		-	-	'	30	v	•	XOc		-		v		60	U				t (91°	-	U	<u> </u>
00		itte		As ab		SCI	5		31			XOc		`				61	-	R			d for i			
02				As ab					32			Xoc		`	,			62	As above					,		
03				As ab					33				cont	·				63	As above							
04				As ab					34				cont		,			64	As above							
05				As ab					35	XOcont (5°C)					65	As above										
06			ŀ	As ab	ove				36				cont	· ·				66				As a	bove)		
07			ŀ	As ab	ove				37	XOcont (9°C)					67	As above										
08			ŀ	As ab	ove				38	XOcont (11°C)						68				As a	bove	;				
09			ŀ	As ab	ove				39			XOc	cont	(13°	°C)			69				As a	bove	;		
0A			ŀ	As ab	ove				ЗA			XOc	cont	(15°	°C)			6A				As a	bove)		
0B			ŀ	As ab	ove				3B			XOc	cont	(17°	°C)			6B				As a	bove	;		
0C			ŀ	As ab	ove				3C			XOc	cont	(19°	°C)			6C				As a	bove)		
0D			ŀ	As ab	ove				3D			XOc	cont	(21°	°C)			6D				As a	lbove			
0E			ŀ	As ab	ove				3E			XOc	ont	(23°	°C)			6E				As a	bove	•		
0F		25°C co		npera ensat					3F			XOc	cont	(25°	°C)			6F					•			
10		Re	ese	rved f	for us	sers	6		40			XOc	cont	(27°	°C)			70				As a	lbove	•		
11			ŀ	As ab	ove				41			XOc	cont	(29°	°C)			71				As a	lbove	;		
12			As above					42			XOc	cont	(31°	°C)			72				As a	bove)			
13	As above				43			XOc			,			73				As a	bove)						
14		As above				44			XOc	cont	(35°	°C)			74				As a	bove	•					
15			ŀ	As ab	ove				45			XOc			,			75	-			As above				
16			ŀ	As ab	ove				46			XOc		-				76	-	As above						
17				As ab					47					it (41°C) it (43°C)				77					bove			
18				As ab					48									78					bove			
19				As ab					49			XOc						79					bove			
1A				As ab					4A			XOc						7A					bove			
1B				As ab					4B			XOc			,			7B				As a	bove)		
1C				cont (,			4C			XOc		`	,											
1D				cont (4D			XOc														
1E				cont (4E			XOc		`												
1F				cont (4F			XOc		-												
20 21	-			cont (50 51			XOc		,												
				cont (-			XOc		<u>.</u>												
22 23	<u> </u>			cont (52 53			XOc XOc														
23	-			cont (53			XOc														
24	-			cont (55			XOc		`												
26				cont (56			XOc		-												
20	-			cont (57			XOc														
28	-			cont (58			XOc														
20	-			`					59			XOc		`	'											
23 2A	XOcont (–19°C) XOcont (–17°C)						5A			XOc		`														
2R 2B	XOcont (-15°C)						5B			XOc		`	,													
2C	-			cont (5C			XOc														
20 2D				cont (50 5D			XOc			,											
2E									5E			XOc														
	XOcont (-9°C) XOcont (-7°C)					5F			XOc		<u>.</u>															

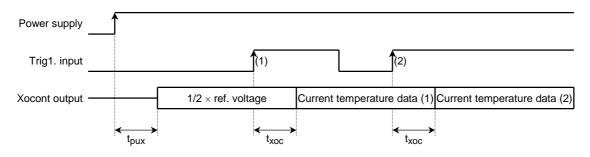
E²PROM Data Save Map

(Contents of addresses 00H~0EH, 10H~1BH, 61H~7BH): Reserved area for users

(Contents of address 0FH): 25°C temperature sensor compensation data (8-bit data is used to compensate for temperature fluctuation in sensor ICs.)

(Contents of addresses 1CH~60H): XO cont temperature data (temperature range: -45° C~91°C, 8-bit data, one value for each 2°C increment)

XOcont Output Operation


XOcont is the output pin used to output temperature compensation data (XOcont data) corresponding to the output from the built-in temperature sensor. Data corresponding to each 2° C temperature increment is stored in the E²PROM.

1. Output at power-on

At power-on, $1/2 \ge 100$ x ref. voltage (80H) is output on XOcont. Delay time tpux, from power-on to start of output of $1/2 \ge 100$ µs or less.

2. Output caused by trigger input

The rising edge of the Trig.1 input triggers the built-in temperature sensor. The sum of the temperature sensor output and 25°C temperature sensor compensation data (stored at address 0FH) is used as the XOcont data address. The XOcont data is converted to an analog voltage level and output on XOcont. The delay time txoc, from Trig.1 input to start of voltage output, is 500 µs or less.

Output timing for XOcont

3. XOcont data

The XO cont data is stored at addresses 1CH~60H of the E²PROM and is used as compensation data corresponding to every 2°C increment in the ambient temperature range -45° C~91°C.

The voltage output on XOcont corresponds to the 8-bit data stored in the E^2PROM (0 V for the value stored at address 00H; V_{Ref} for the value stored at address FFH).

<u>TOSHIBA</u>

Temperature Sensor

The IC incorporates a temperature sensor which can detect temperatures with an accuracy of 2° C. The sum of the output from the temperature sensor (after conversion to a digital value) and the 25° C temperature sensor compensation data (stored at address 0FH) is used as the E²PROM address of the compensation data.

In Normal Operation Mode, the temperature sensor is inactive. The sensor is triggered by the rising edge of STB or by the Trig.1 input. On completion of operation, the sensor returns to its inactive state.

The 25°C temperature sensor compensation data can be written to address 0FH of the E²PROM as follows:

1. Measurement of ambient temperature and device temperature data (before compensation)

- The ambient temperature of the test environment is measured.
- Read the temperature data of TC7MTX02FK before compensation

2. Calculation of 25°C temperature sensor compensation data

- If the ambient temperature is 25°C, the compensation data can be calculated as follows: 25°C temperature sensor compensation data = 3FH temperature data before compensation
- If the ambient temperature is not 25°C, add the difference between the ambient temperature and 25°C to the result of the above calculation.

The following table shows 25° C temperature sensor compensation values corresponding to the ambient temperature and the raw temperature data

Temperature Data			Am	bient Tempe	erature in Te	st Environm	ent					
before Compensation (TC7MTX02FK)	21°C	22°C	23°C	24°C	25°C	26°C	27°C	28°C	29°C			
41	FC	FC	FD	FD	FE	FE	FF	FF	00			
40	FD	FD	FE	FE	FF	FF	00	00	01			
3F	FE	FE	FF	FF	00	00	01	01	02			
3E	FF	FF	00	00	01	01	02	02	03			
3D	00	00	01	01	02	02	03	03	04			
3C	01	01	02	02	03	03	04	04	05			
3B	02	02	03	03	04	04	05	05	06			
3A	03	03	04	04	05	05	06	06	07			
39	04	04	05	05	06	06	07	07	08			
38	05	05	06	06	07	07	08	08	09			
37	06	06	07	07	08	08	09	09	0A			
36	07	07	08	08	09	09	0A	0A	0B			
35	08	08	09	09	0A	0A	0B	0B	0C			
34	09	09	0A	0A	0B	0B	0C	0C	0D			

25°C temperature sensor compensation values corresponding to the ambient temperature and the temperature data before compensation

All values above are hexadecimal.

3. E²PROM Write

This instruction writes the 25° C address compensation data to address 0FH in the E²PROM.

Maximum Ratings (GND = 0.0 V)

Characteristic	Symbol	Rating	Unit	Pin
Supply voltage	V _{CC}	-0.5~6.5	V	V _{CC}
E ² PROM write voltage	VP	-0.5~20.0	V	V.P
Reference voltage	V _{Ref}	$-0.5 \sim V_{CC} + 0.5$	V	Ref.
Input voltage	V _{IN}	-0.5~6.5	V	DIN, CK, STB, W/R, Trig1
Output voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V	DOUT, XOcont
Input current	I _{IN}	±10	mA	DIN, CK, STB, W/R, Trig1
Power dissipation	PD	180	mW	
Storage temperature	T _{stg}	-40~125	°C	

Recommended Operating Conditions (GND = 0.0 V)

Characteristic	Symbol	Min	Тур.	Max	Unit
Supply voltage	V _{CC}	2.7	3.0	3.6	V
E ² PROM write voltage	VP	17.0	18.0	19.0	V
Reference voltage	V _{Ref}	2.7	2.8	2.9	V
Input voltage	V _{IN}	0	_	V _{CC}	V
Input rise/fall time	t _{rφ} , t _{fφ}	_	_	1.0	μS
Power-on rise time	t _v	100	_	_	μS
Operating temperature	T _{opr}	-40		85	°C

E²PROM Characteristics

Characteristic	Symbol	Test Circuit	Min	Тур.	Max	Unit
No. of rewrites	N _{wr}	Ta = 25°C, V _{CC} = 3.0 V, V _P = 18.0 V	10000	_	_	Times
Data retention time	t _{RET}	Ta = -40~85°C	10	_		Years

DC Characteristics (GND = 0.0 V)

Characteristic	Sumbol	Test Circuit	Ta = -	–40°C	-	Ta = 25°0	2	Ta =	85°C	Unit
Characteristic	Symbol	Test Circuit	Min	Max	Min	Тур.	Min	Min	Max	Unit
High-level input voltage	VIH	$V_{CC} = 2.7 \sim 3.3 \text{ V}$	2.0		2.0			2.0		V
Low-level input voltage	VIL	$V_{CC} = 2.7 \sim 3.3 \text{ V}$	_	0.5	_	_	0.5		0.5	V
Hysteresis voltage	V _H	$V_{CC} = 3.0V$	_	_	_	0.3	_	_	_	V
High-level output current (DOUT)	ЮН	$\begin{array}{l} V_{CC}=3.0 \text{ V} \\ V_{OH}=2.4 \text{ V} \end{array}$	4.0	_	4.0	7.0	_	3.2	_	mA
Low-level output current (DOUT)	I _{OL}	$\begin{array}{l} V_{CC}=3.0 \ V \\ V_{OL}=0.4 \ V \end{array}$	4.0	_	4.0	8.5	_	3.2	_	mA
Input current	I _{IN}	V _{CC} = 3.3 V V _{IN} = 0 or 3.3 V	_	±1.0	_	_	±1.0	_	±5.0	μA
Three-state OFF leakage current (DOUT)	I _{OZ}	V _{CC} = 3.3 V V _{OUT} = 0 or 3.3 V		±1.0	_	_	±1.0	_	±5.0	μA
Pull-down resistance (DIN, CK, STB, W/R)	R _{PD}	V _{CC} = 2.7~3.3 V	_	_	4	10	20	_	_	kΩ
Auto-reset release voltage	V _{RD}		_	2.5	_	1.8	2.5	_	2.5	V
Static current dissipation	ICC	$\begin{array}{l} V_{CC} = 3.0 \ V \ (Note \ 2) \\ V_{IN} = V_{CC} \ or \ GND \end{array}$				0.5	1.0			mA
Static current dissipation	I _{REF}	$\begin{array}{l} V_{CC} = 2.8 \ V (Note2) \\ V_{IN} = V_{CC} \ or \ GND \end{array}$	_			0.1	1.0			mA

Note2: The current generated by setting the input pins with pull-down resistors to High is not included.

AC Characteristics

(Ta = 25°C, V_{CC} = 3.0 V, V_{Ref} = 2.8 V, GND = 0 V, C_L = 50 pF, Input: t_r, t_f = 6 ns)

E²PROM Write Timing (applies to Operation Modes 1, 3 and 4)

Characteristic	Symbol	Test Circuit	Тур	Limit	Unit
Minimum VP power-on timing time (V.P power supply – STB input)	t _{sv}	Figure 1	_	0	ns
Minimum VP power-off timing time (STB input – V.P power supply)	t _{hv}	Figure 1	_	0	ns
Minimum VP power supply cut-off pulse width	t _{wL}	Figure 1		10	μS
Minimum set-up time (W/R input – STB input)	t _{sw}	Figure 1	_	0	ns
Minimum hold time (W/R input – STB input)	t _{hw}	Figure 1	—	40	ns
Minimum removal time (STB input – CK input)	t _{rem}	Figure 1	-5	40	ns
Minimum write time (CK input – W/R input)	t _{pws}	Figure 1	_	10	ms
Minimum pulse width (STB input)	t _{wL}	Figure 1	_	10	μS
Minimum clock cycle time (CK input)	t _{cyc}	Figure 1	0.2	2	μS
Minimum clock pulse width (CK input)	t _{wH} t _{wL}	Figure 1	0.1	1	μS
Minimum set-up time (DIN input – CK input)	t _{su}	Figure 1	-3	40	ns
Minimum hold time (DIN input – CK input)	t _h	Figure 1	5	40	ns

E²PROM Read Timing (applies to Operation Mode 2)

Characteristic	Symbol	Test Circuit	Тур	Limit	Unit
Minimum set-up time (W/R input – STB input)	t _{sr}	Figure 2		0	ns
Minimum hold time (W/R input – STB input)	t _{hr}	Figure 2		0	ns
Minimum removal time (STB input – CK input)	t _{rem}	Figure 2	-5	40	ns
Minimum pulse width (STB input)	t _{wL}	Figure 2	0.1	1	μS
Minimum clock cycle time (CK input)	t _{cyc}	Figure 2	0.2	2	μS
Minimum clock pulse width (CK input)	t _{wH} t _{wL}	Figure 2	0.1	1	μS
Minimum set-up time (DIN input – CK input)	t _{su}	Figure 2	-3	40	ns
Minimum hold time (DIN input – CK input)	t _h	Figure 2	5	40	ns
Propagation delay time (CK input – DOUT output)	t _{pZH} t _{pZL}	On first DOUT output Figure 2	15	100	ns
Propagation delay time (CK input – DOUT output)	t _{pLH} t _{pHL}	On second and subsequent DOUT outputs Figure 2	15	100	ns
Output Disable time (STB input – DOUT output)	t _{PLZ} t _{pHL}	Figure 2	20	100	ns

Timing in Other Modes (applies to Operation Modes 5 and 6)

Characteristic		Test Circuit	Тур	Limit	Unit
Minimum removal time (STB input – CK input)	t _{rem}	Operation modes 5 and 6 (temperature data read modes) Figure 2	140	400	μS

Note3: All characteristics except for t_{rem} are the same as those for the E²PROM read timing.

Characteristics of Analog Block (Ta = 25° C, V_{CC} = 2.80 V, V_{Ref} = 2.80 V, GND = 0 V)

XOcont Output

Characteristic	Symbol	Test Circuit	-	Ta = 25°C	2	Ta = -4	0~85°C	Unit
Characteristic	Symbol	Test Circuit	Min	Тур.	Max	Min	Max	Unit
XOcont output response time (Trig.1 – XOcont)	t _{xoc}	Figure 3		200	450	_	500	μS
XOcont output voltage	V _{XOC}	XOcont data: 80H XOcont output < 1 μA	1380	1400	1420	1380	1420	mV
XOcont output voltage variation	ΔV _{XOC}	XOcont data1 per bit XOcont output < 1 μA	_	10.98	_	_	_	mV
XOcont output voltage linearity	ΔNLX	XOcont data: $00H \le DATA \le FFH$ (Note 4)		±1	±1	_	±1	LSB

Temperature Sensor

Characteristic	Symbol	Test Circuit		Min	Тур.	Max	Unit
Temperature sensor output Value (output at Ta = 25°C before compensation)	Tsen1	Ta = 25°C Temperature sensor output before compensation		30H	3AH	44H	_
Temperature sensor output Value (output at Ta = -40°C before compensation)	Tsen2	Ta = -40°C Temperature sensor output before compensation		0FH	19H	23H	_
Temperature sensor output Value (output at Ta = 85°C before compensation)	Tsen3	Ta = 85°C Temperature sensor output before compensation		4EH	58H	62H	_
Temperature sensor output Variation	ΔTS	Per 1°C			2		LSB
Temperature sensor output Linearity	ΔNLT	$-40^{\circ}C \leq Ta \leq 85^{\circ}C$ (No	ote4)	—	±1	±6	LSB

Note 4: The linearity is the deviation of the actual characteristic curve from the expected variation.

Timing Charts

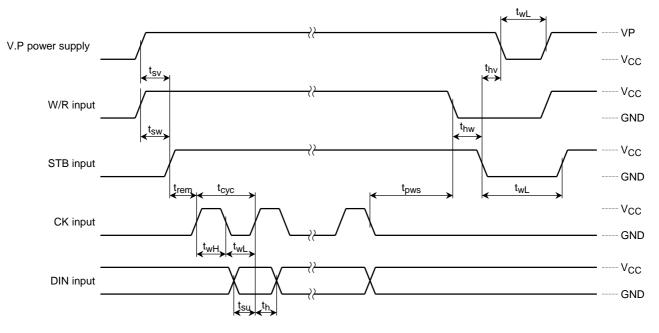
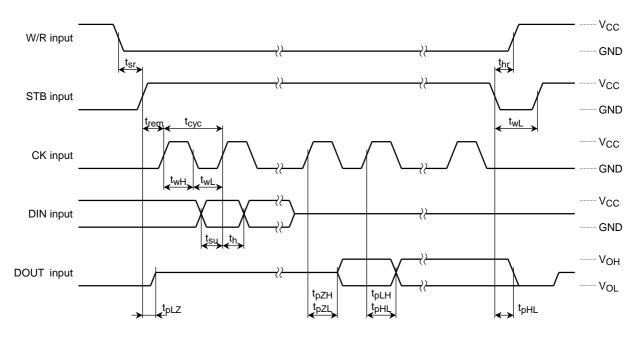



Figure 1 Timing chart for E²PROM Write Mode

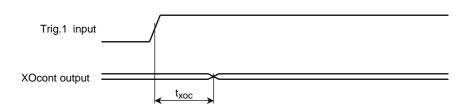


Figure 3 Timing chart for analog output

Package Dimensions

VSSOP16-P-0030-0.50

Unit : mm

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability"
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.