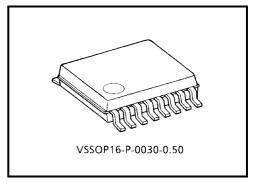
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MH367FK,TC7MH368FK

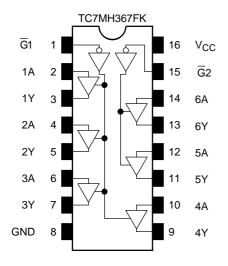

HEX Bus Buffer

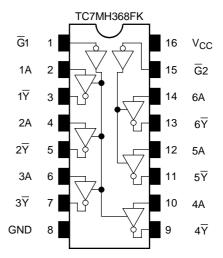
TC7MH367FK Non-Inverted, 3-State Outputs TC7MH368FK Inverted, 3-State Outputs

The TC7MH367FK and TC7MH368FK are advanced high speed CMOS HEX bus buffers fabricated with silicon gate $\rm C^2MOS$ technology.

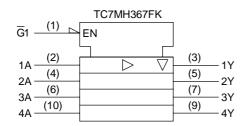
They achieve the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

They contain six buffers; four buffers are controlled by an enable input $(\overline{G}1)$, and the other two buffers are controlled by another enable input $(\overline{G}2)$. The outputs of each buffer group are enabled when $\overline{G}1$ and/or $\overline{G}2$ inputs are held low; if held high, these outputs are in a high impedance state.

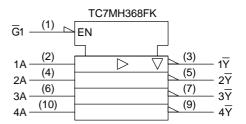

Weight: 0.02 g (typ.)

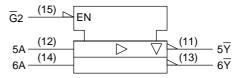

The TC7MH367FK is a non-inverting output type, while the TC7MH368FK is an inverting output type. An input protection circuit ensures that 0 to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features


- High speed: $t_{pd} = 3.8 \text{ ns (typ.)} (V_{CC} = 5 \text{ V})$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max) (Ta} = 25 ^{\circ}\text{C)}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- · Power down protection is provided on all inputs.
- Balanced propagation delays: $t_pLH \approx t_pHL$
- Wide operating voltage range: $V_{CC (opr)} = 2 \sim 5.5 \text{ V}$
- Low noise: VOLP = 0.8 V (max)
- Pin and function compatible with 74ALS367/368

Pin Assignment (top view)





IEC Logic Symbol

Truth Table

Inp	uts	Outputs				
G	Α	Y (367)	Y (368)			
L	L	L	Н			
L	Н	Н	L			
Н	Х	Z	Z			

- X: Don't care
- Z: High impedance

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	Vcc	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	Vout	-0.5~V _{CC} + 0.5	V
Input diode current	I _{IK}	-20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0~5.5	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	V _{OUT}	0~V _{CC}	V	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	$0 \sim 100 \; (V_{CC} = 3.3 \pm 0.3 \; V)$	ns/V	
Input noe and rail time	ui/uv	$0 \sim 20 \ (V_{CC} = 5 \pm 0.5 \ V)$	113/V	

3

Electrical Characteristics

DC Characteristics

Characteristics Symbol Test Condition		Cumbal	Cumbal Test Condition			Ta = 25°C)	Ta = -40~85°C		Unit
		V _{CC} (V)	Min	Тур.	Max	Min	Max				
					2.0	1.50	_	_	1.50	_	
High level Input voltage	High level	V _{IH}	_		3.0~5.5	V _{CC} × 0.7	_	_	V _{CC} × 0.7	-	V
input voltage			_		2.0		_	0.50	_	0.50	
	Low level	V_{IL}			3.0~5.5		_	$\begin{array}{c} V_{CC} \\ \times \ 0.3 \end{array}$	_	$\begin{array}{c} V_{CC} \\ \times 0.3 \end{array}$	
					2.0	1.9	2.0		1.9	_	
		Vон	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50 \ \mu A$	3.0	2.9	3.0		2.9		
Output voltage	High level				4.5	4.4	4.5	_	4.4	_	
				$I_{OH} = -4 \text{ mA}$	3.0	2.58	_	_	2.48	_	
				$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80	_	V
	Low level	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA	2.0	_	0	0.1		0.1	
					3.0	_	0	0.1	—	0.1	
					4.5	_	0	0.1	_	0.1	
				$I_{OL} = 4 \text{ mA}$	3.0	_	_	0.36	_	0.44	
				$I_{OL} = 8 \text{ mA}$	4.5	_	_	0.36	_	0.44	
3-state output off	-state current	l _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		5.5	_		±0.25		±2.50	μА
Input leakage cu	rrent	I _{IN}	V _{IN} = 5.5 V or GND		0~5.5	_	_	±0.1	_	±1.0	μА
Quiescent supply	/ current	Icc	$V_{IN} = V_{CC}$ or GND		5.5	_	_	4.0	_	40.0	μΑ

AC Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

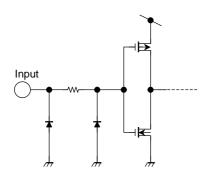
Characteristics	Symbol Test Condition				Ta = 25°C			Ta = -40~85°C		Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Offic
			3.3 ± 0.3	15	_	5.9	8.3	1.0	10.0	
Propagation delay time	t _{pLH}		3.3 ± 0.3	50	_	8.4	11.8	1.0	13.5	ns
(TC7MH367)	t _{pHL}	_	5.0 ± 0.5	15	_	4.1	5.9	1.0	7.0	113
			3.0 ± 0.3	50	_	5.6	7.9	1.0	9.0	
			3.3 ± 0.3	15	_	5.3	7.5	1.0	9.0	
Propagation delay time	t _{pLH}		3.3 ± 0.3	50	_	7.8	11.0	1.0	12.5	ne
(TC7MH368)	t _{pHL}	_	5.0 ± 0.5	15	_	3.8	5.5	1.0	6.5	ns
				50	_	5.3	7.5	1.0	8.5	
	^t pZL I ^t pZH	R _L = 1 kΩ	3.3 ± 0.3 · 5.0 ± 0.5 ·	15	_	6.8	10.5	1.0	12.5	- ns
2 state output enable time				50	_	9.3	14.0	1.0	16.0	
3-state output enable time				15	_	4.8	7.2	1.0	8.5	
				50	_	6.3	9.2	1.0	10.5	
3-state output disable time	t _{pLZ}	$R_{I} = 1 k\Omega$	3.3 ± 0.3	50		9.9	13.6	1.0	15.5	ns
5-State output disable time	t _{pHZ}	NL - 1 K22	5.0 ± 0.5	50	_	6.3	9.2	1.0	10.5	115
Output to output skew	t _{osLH}	(Note1)	3.3 ± 0.3	50	_	_	1.5	_	1.5	ns
Output to output skew	t _{osHL}	(Note1)	5.0 ± 0.5	50			1.0	_	1.0	113
Input capacitance	C _{IN}	_	_		_	4	10	_	10	pF
Output capacitance	C _{OUT}	_		_	6		_	_	pF	
Power dissipation capacitance	C _{PD}			(Note2)	_	19		_	_	pF

Note1: Parameter guaranteed by design.

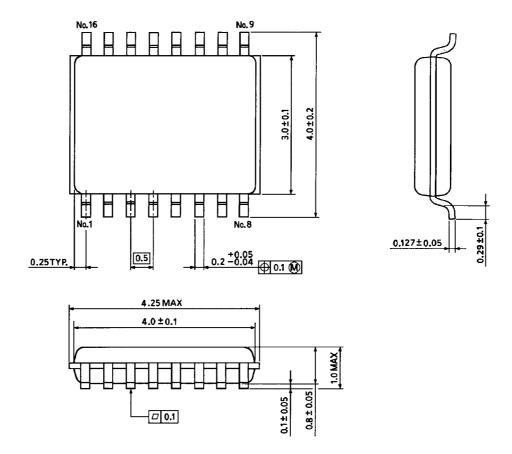
 $t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|$

Note2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:


 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/6 (per bit)$

Noise Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)


Characteristics	Symbol	Test Condition		Ta = 25°C		Unit
Granacieristics	Symbol	rest Condition	V _{CC} (V)	Тур.	Limit	Oill
Quiet output maximum dynamic V _{OL}	V _{OLP}	C _L = 50 pF	5.0	0.4	0.8	V
Quiet output minimum dymnamic V _{OL}	V _{OLV}	C _L = 50 pF	5.0	-0.4	-0.8	V
Minimum high level dynamic input voltage V_{IH}	V_{IHD}	C _L = 50 pF	5.0	_	3.5	V
Maximum low level dynamic input voltage $V_{\rm IL}$	V _{ILD}	C _L = 50 pF	5.0	_	1.5	V

Input Equivalent Circuit

6

Package Dimensions

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.