TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX16374AFT

Low-Voltage 16-Bit D-Type Flip-Flop with 5-V Tolerant Inputs and Outputs

The TC74LCX16374AFT is a high-performance CMOS 16-bit D-type flip-flop. Designed for use in $3.3-\mathrm{V}$ systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to $5-\mathrm{V}$ supply environment for both inputs and outputs.

This 16 -bit D-type flip-flop is controlled by a clock input (CK) and an output enable input ($\overline{\mathrm{OE}}$) which are common to each byte. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. When the $\overline{\mathrm{OE}}$ input is high, the outputs are in a high-impedance state.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.25 g (typ.)

Features

- Low-voltage operation: $\mathrm{VCC}_{\mathrm{C}}=2.0$ to 3.6 V
- High-speed operation: $\mathrm{t}_{\mathrm{pd}}=7.0 \mathrm{~ns}(\max)(\mathrm{VCC}=3.0$ to 3.6 V$)$
- Ouput current: $|\mathrm{IOH}| / \mathrm{IOL}=24 \mathrm{~mA}(\mathrm{~min})(\mathrm{VCC}=3.0 \mathrm{~V})$
- Latch-up performance: $\pm 500 \mathrm{~mA}$
- Package: TSSOP (thin shrink small outline package)
- Power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Inputs			Outputs
$1 \overline{\mathrm{OE}}$	1 CK	1D1-1D8	1Q1-1Q8
H	X	X	Z
L	$\square \downarrow$	X	Qn
L	\uparrow	L	L
L	\uparrow	H	H

Inputs			Outputs
$2 \overline{\mathrm{OE}}$	2 CK	2D1-2D8	2Q1-2Q8
H	X	X	Z
L	\downarrow	X	Qn
L	\uparrow	L	L
L	\uparrow	H	H

X: Don't care
Z: High impedance
Qn: No change

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	-0.5 to 7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to 7.0	V
Output voltage	Vout	-0.5 to 7.0 (Note 1)	V
		$-0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5$ (Note 2)	
Input diode current	$\mathrm{I}_{\text {IK }}$	-50	mA
Output diode current	IOK	± 50 (Note 3)	mA
DC output current	IOUT	± 50	mA
Power dissipation	P_{D}	400	mW
DC $\mathrm{V}_{\text {cc }} /$ ground current per supply pin	$\mathrm{I}_{\text {CC }} / \mathrm{l}_{\text {GND }}$	± 100	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note 1: Output in OFF state
Note 2: High or low state. IOUT absolute maximum rating must be observed.
Note 3: VOUT < GND, VOUT > VCC

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	2.0 to 3.6	V
		1.5 to 3.6 (Note 4)	
Input voltage	$\mathrm{V}_{\text {IN }}$	0 to 5.5	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	0 to 5.5 (Note 5)	V
		0 to $\mathrm{V}_{\text {CC }}$ (Note 6)	
Output current	$\mathrm{lOH} / \mathrm{lOL}$	$\pm 24 \quad$ (Note 7)	mA
		± 12 (Note 8)	
Operating temperature	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Input rise and fall time	$\mathrm{dt} / \mathrm{dv}$	0 to 10 (Note 9)	ns / V

Note 4: Data retention only
Note 5: Output in OFF state
Note 6: High or low state
Note 7: $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
Note 8: $V_{C C}=2.7$ to 3.0 V
Note 9: $\mathrm{V}_{\mathrm{IN}}=0.8$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Electrical Characteristics

DC Characteristics ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Condition			Min	Max	Unit	
Input voltage	H-level	V_{IH}	-		2.7 to 3.6	2.0	-	V	
	L-level	$\mathrm{V}_{\text {IL }}$	-		2.7 to 3.6	-	0.8		
Output voltage	H-level	V_{OH}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OH}=-100 \mu \mathrm{~A}$	2.7 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -0.2 \end{aligned}$	-	V	
				$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$	2.7	2.2	-		
				$\mathrm{IOH}^{\prime}=-18 \mathrm{~mA}$	3.0	2.4	-		
				$\mathrm{IOH}=-24 \mathrm{~mA}$	3.0	2.2	-		
	L-level	V_{OL}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7 to 3.6	-	0.2		
				$\mathrm{IOL}=12 \mathrm{~mA}$	2.7	-	0.4		
				$\mathrm{l} \mathrm{OL}=16 \mathrm{~mA}$	3.0	-	0.4		
				$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$	3.0	-	0.55		
Input leakage current		IIN	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.5 V		2.7 to 3.6	-	± 5.0	$\mu \mathrm{A}$	
3-state output OFF state current		loz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		2.7 to 3.6	-	± 5.0	$\mu \mathrm{A}$	
Power-off leakage current		loff	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		0	-	10.0	$\mu \mathrm{A}$	
Quiescent supply current		I_{CC}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND		2.7 to 3.6	-	20.0		
		$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=3.6$ to 5.5 V	2.7 to 3.6	-	± 20.0	$\mu \mathrm{A}$			
Increase in Icc per input			$\Delta \mathrm{l}$ CC	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		2.7 to 3.6	-	500	

AC Characteristics ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Min	Max	Unit
Maximum clock frequency	$f_{\text {max }}$	Figure 1, Figure 2	2.7	-	-	MHz
			3.3 ± 0.3	170	-	
Propagation delay time(CK-Q)	$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Figure 1, Figure 2	2.7	-	8.0	ns
			3.3 ± 0.3	1.5	7.0	
3-state output enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pZL}} \\ & \mathrm{t}_{\mathrm{pZH}} \end{aligned}$	Figure 1, Figure 3	2.7	-	8.2	ns
			3.3 ± 0.3	1.5	7.2	
3-state output disable time	$\begin{gathered} \mathrm{t}_{\mathrm{pLZ}} \\ \mathrm{t}_{\mathrm{pHZ}} \end{gathered}$	Figure 1, Figure 3	2.7	-	8.2	ns
			3.3 ± 0.3	1.5	7.2	
Minimum pulse width (CK)	$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Figure 1, Figure 2	2.7	4.0	-	ns
			3.3 ± 0.3	3.0	-	
Minimum setup time	t_{s}	Figure 1, Figure 2	2.7	2.5	-	ns
			3.3 ± 0.3	2.5	-	
Minimum hold time	$t_{\text {h }}$	Figure 1, Figure 2	2.7	1.5	-	ns
			3.3 ± 0.3	1.5	-	
Output to output skew	$\begin{aligned} & \mathrm{t}_{\mathrm{osLH}} \\ & \mathrm{t}_{\mathrm{osHL}} \end{aligned}$		2.7	-	-	ns
			3.3 ± 0.3	-	1.0	

Note 10: Parameter guaranteed by design.
$\left(\mathrm{t}_{\text {osLH }}=\left|\mathrm{t}_{\mathrm{pLH}}-\mathrm{t}_{\mathrm{pLHn}}\right|, \mathrm{t}_{\text {os }} \mathrm{HL}=\left|\mathrm{t}_{\mathrm{pHLm}}-\mathrm{t}_{\mathrm{pHLn}}\right|\right)$
Dynamic Switching Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Characteristics	Symbol	Test Condition		Typ.	Unit
			$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$		
Quiet output maximum dynamic V_{OL}	V OLP	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V
Quiet output minimum dynamic V_{OL}	\| $\mathrm{V}_{\mathrm{OLV}}$ \|	$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.8	V

Capacitive Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition		$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Typ.	Unit
Input capacitance	C_{IN}	-		3.3	7	pF
Output capacitance	Cout	-		3.3	8	pF
Power dissipation capacitance	CPD	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$	(Note 11)	3.3	25	pF

Note 11: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation:
$\operatorname{ICC}($ opr $)=$ CPD $\cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{fi}_{\mathrm{I}}+\mathrm{I}_{\mathrm{CC}} / 16$ (per bit)

AC Test Circuit

Parameter	Switch
$\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$	Open
$\mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pZL}}$	6.0 V
$\mathrm{t}_{\mathrm{pHZ}}, \mathrm{t}_{\mathrm{pZH}}$	GND
$\mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{h}}, \mathrm{f}_{\max }$	Open

Figure 1

AC Waveform

Figure $2 \mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}, \mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathbf{s}}, \mathrm{t}_{\mathrm{h}}$

Figure 3 tpLZ, $\mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{pzL}}, \mathrm{t}_{\mathrm{pzH}}$

Package Dimensions

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

