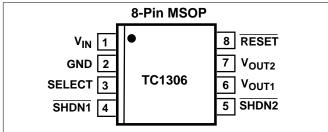
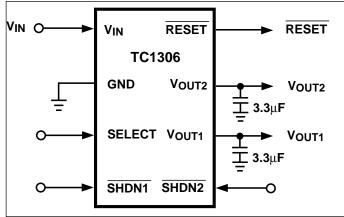


TC1306

Dual 150mA CMOS LDO With Select Mode[™], SHUTDOWN And RESET Output


FEATURES

- Extremely Low Supply Current for Longer Battery Life!
- Select Mode[™]: Selectable Output Voltages for High Design Flexibility
- Very Low Dropout Voltage
- 10µsec (Typ.) Wake Up Time from SHDN
- Guaranteed 150mA Output Current
- High Output Voltage Accuracy
- Power-Saving Shutdown Mode
- RESET Output Can Be Used as a Low Battery Detector, or Processor Reset Generator
- Over-Current and Over-Temperature Protection
- Space-Saving 8-Pin MSOP Package


APPLICATIONS

- Battery Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular / GSM / PHS Phones
- Linear Post-Regulator for SMPS
- Pagers

PIN CONFIGURATION

TYPICAL APPLICATION

GENERAL DESCRIPTION

The TC1306 combines two CMOS Low Dropout Regulators and a Microprocessor Monitor in a space-saving 8-Pin MSOP package. Designed specifically for battery-operated systems, the device's CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current for this device is typically 120 μ A at full load (20 to 60 times lower than in bipolar regulators!).

The TC1306 features selectable output voltages for higher design flexibility. The dual-state SELECT pin allows the user to select V_{OUT2} from 2 different values (2.8V and 3.0V). V_{OUT1} supplies a fixed 1.8V voltage.

An active low $\overline{\text{RESET}}$ is asserted when the output voltage V_{OUT2} falls below the 2.63V reset voltage threshold. The RESET output remains low for 300msec (typical) after V_{OUT2} rises above reset threshold. When the shutdown control (SHDN1) is low, the regulator output voltage V_{OUT1} falls to zero and RESET output remains valid. When the shutdown control (SHDN2) is low, the regulator output voltage V_{OUT2} falls to zero and RESET output remains valid.

Other key features for the device include ultra low-noise operation, fast response to step changes in load, and very low dropout voltage, typically 240mV at full load. The device also incorporates both over-temperature and over-current protection.

Each regulator is stable with an output capacitor of only 1μ F and has a maximum output current of 150mA.

ORDERING INFORMATION

Part Number	Package	Junction Temp. Range		
TC1306R-BDVUA	8-Pin MSOP	– 40°C to +125°C		
NOTE: The "R" denotes the suffix for the 2.63V RESET threshold				

Available Output Voltages:

B indicates Vout1 = 1.8V (fixed) D indicates Vout2 = 2.8V, 3.0V (selectable)

Other output voltages are available. Please contact Microchip Technology for details.

TC1306

ABSOLUTE MAXIMUM RATINGS*

Lead Temperature (Soldering, 10 Sec.) +260°C

Input Voltage	6.5V
Output Voltage	
Power Dissipation	Internally Limited (Note 6)
Operating Temperature	− 40°C < T _J < 125°C
Storage Temperature	– 65°C to +150°C
Maximum Voltage On Any Pin	V_{IN} + 0.3V to $-$ 0.3V

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: $V_{IN} = V_R + 1V$, $I_L = 100\mu$ A, $C_L = 3.3\mu$ F, SHDN1 > V_{IH} , SHDN2 > V_{IH} , $T_A = 25^{\circ}$ C, unless otherwise noted. **Boldface** type specifications apply for junction temperatures of -40° C to $+125^{\circ}$ C.

Symbol	Parameter	Test Conditions	Min	Тур	Max 6.0	Units V
V _{IN}	Input Operating Voltage		2.7			
IOUTMAX	Maximum Output Current		150	_		mA
Vout	Output Voltage	Note 1	V _R – 2.5%	V _R ±0.5%	V _R + 2.5%	V
TCV _{OUT}	V _{OUT} Temperature Coefficient	Note 2	_	20 40	_	ppm/°C
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	$(V_R + 1V) \le V_{IN} \le 6V$	_	0.05	0.35	%
$\Delta V_{OUT}/V_{OUT}$	Load Regulation	$I_L = 0.1 \text{mA}$ to I_{OUTMAX} Note 3	—	0.5	2	%
V _{IN} – V _{OUT}	Dropout Voltage	$I_L = 100\mu A$ $I_L = 50m A$ $I_L = 100m A$ $I_L = 150m A$ Note 4		2 80 160 240		mV
I _{IN}	Supply Current	SHDN1, SHND2=VIH, IL=0		120	200	μA
IINSD	Shutdown Supply Current	$\overline{SHDN1}, \overline{SHDN2} = 0V$		0.05	0.5	μΑ
PSRR	Power Supply Rejection Ratio	F _{RE} ≤1KHz		64		dB
I _{OUTSC}	Output Short Circuit Current	V _{OUT} = 0V		450	600	mA
$\Delta V_{OUT} / \Delta P_D$	Thermal Regulation	Notes 5,6		0.04		V/W
t _{WK}	Wake Up Time (from Shutdown Mode)	$V_{IN} = 5V$ $C_{IN} = 1\mu F, C_{OUT} = 4.7\mu F$ $I_L = 30mA, (See Fig. 2)$	_	10	20	μsec
ts	Settling Time (from Shutdown Mode)	$V_{IN} = 5V$ $C_{IN} = 1\mu F$, $C_{OUT} = 4.7\mu F$ $I_L = 30mA$, (See Fig. 2)	_	40		μsec
T _{SD}	Thermal Shutdown Die Temperature			160		°C
ΔT_{SD}	Thermal Shutdown Hysteresis			10		°C
eN	Output Noise	$I_L = I_{OUTMAX}$, F = 10kHz 470pF from Bypass to GND	—	600	—	nV/√Hz
SHDN Input	:				I	
V _{IH}	SHDN Input High Threshold	$V_{IN} = 2.7V$ to 6.0V	65			%V _{IN}
VIL	SHDN Input Low Threshold	V _{IN} = 2.7V to 6.0V	_		15	%V _{IN}
SELECT Inp	put					
V _{SELH}	SELECT Input High Threshold	$V_{IN} = 2.7V$ to 6.0V	65	_		%V _{IN}
V _{SELL}	SELECT Input Low Threshold	V _{IN} = 2.7V to 6.0V	_		15	%V _{IN}

Dual 150mA CMOS LDO With Select Mode[™], Shutdown and RESET Output

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
RESET OL	ıtput					
V _{MIN,IN}	Minimum V _{IN} Operating Voltage	$T_A = 0^{\circ}C$ to +70°C	1.0	_	6.0	V
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$	1.2	—	6.0	
V _{TH}	Reset Threshold	$T_A = +25^{\circ}C$	2.59	2.63	2.66	V
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$	2.55	—	2.70	
	Reset Threshold Tempco		_	30	_	ppm/°C
	V _{OUT2} to Reset Delay	$V_{OUT2} = V_{TH}$ to $(V_{TH} - 100mV)$	—	100	_	μsec
	Reset Active Timeout Period		140	300	560	msec
V _{OL}	RESET Output Voltage Low	$V_{OUT2} = V_{TH} min, I_{SINK} = 1.2mA$			0.3	V
		$V_{OUT2} = V_{TH} min, I_{SINK} = 3.2 mA$	—	—	0.4	
		$V_{OUT2} > 1.0V$, $I_{SINK} = 50\mu A$		—	0.3	
V _{OH}	RESET Output Voltage High	V _{OUT2} > V _{TH} max, I _{SOURCE} = 500µA	0.8 V _{OUT2}	_	_	V
		V _{OUT2} > V _{TH} max, I _{SOURCE} = 800µA	V _{OUT2} – 1.5	—		

ELECTRICAL CHARACTERISTICS: VIN = VR + 1V, IL = 100µA, CL = 3.3µF, SHDN1 > VIH, SHDN2 > VIH, TA = 25°C, unless otherwise noted. Boldface type specifications apply for junction temperatures of - 40°C to +125°C.

NOTES: 1. V_R is the regulator output voltage setting. For example: $V_R = 2.8V$, 3.0V.

2. TCV_{OUT} = $\frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^{6}}{V_{OUT} \times \Delta T}$

3. Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

4. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V differential.

5. Thermal Regulation is defined as the change in output voltage at a time, t, after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for t = 10msec.

6. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Thermal Considerations section of this data sheet for more details.

PIN DESCRIPTION

Pin No. (8-Pin MSOP)	Symbol	Description	
1	V _{IN}	Power supply input.	
2	GND	Ground terminal.	
3	SELECT	SELECT control input for setting V_{OUT2} . SELECT=Low for V_{OUT2} = 2.8V, SELECT=High for V_{OUT2} = 3.0V	
4	SHDN1	Shutdown control input for V _{OUT1} . Regulator 1 is fully enabled when a logic high is applied to this input. Regulator 1 enters shutdown when a logic low is applied to this input. During shutdown, regulator output voltage falls to zero, RESET output remains valid.	
5	SHDN2	Shutdown control input for V _{OUT2} . Regulator 2 is fully enabled when a logic high is applied to this input. Regulator 2 enters shutdown when a logic low is applied to this input. During shutdown, regulator output voltage falls to zero, and RESET output is low.	
6	Vout1	Regulated voltage output 1.	
7	V _{OUT2}	Regulated voltage output 2.	
8	RESET	RESET Output. RESET=Low when V_{OUT2} is below the Reset Threshold Voltage. RESET=High when V_{OUT2} is above the Reset Threshold Voltage.	

TC1306

Turn On Response

The turn on response is defined as two separate response categories, Wake Up Time (t_{WK}) and Settling Time (t_s).

The TC1306 has a fast Wake Up Time (10 μ sec typical) when released from shutdown. See Figure 2 for the **Wake Up Time** designated as t_{WK} . The **Wake Up Time** is defined as the time it takes for the output to rise to 2% of the V_{OUT} value after being released from shutdown.

The total turn on response is defined as the **Settling Time** (ts), see Figure 2. **Settling Time** (inclusive with t_{WK}) is defined as the condition when the output is within 2% of its fully enabled value (50µsec typical) when released from shutdown. The settling time of the output voltage is dependent on load conditions and output capacitance on V_{OUT} (RC response).

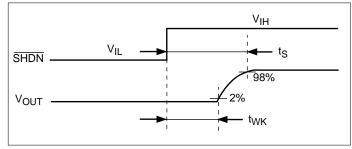


Figure 2: Wake Up Response Time

Thermal Considerations

Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160° C. The regulator remains off until the die temperature drops to approximately 150° C.

Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case *actual* power dissipation:

 $P_D \approx (V_{INMAX} - V_{OUT_{MIN}})I_{LOAD_{MAX}}$

Equation 1.

The maximum allowable power dissipation (Equation 2) is a function of the maximum ambient temperature (T_{AMAX}), the maximum allowable die temperature (125°C), and the thermal resistance from junction-to-air (θ_{JA}). The MSOP-8 package has a θ_{JA} of approximately 200°C/W; when mounted

on a single layer FR4 dielectric copper clad PC board.

$$\mathsf{P}_{\mathsf{DMAX}} = \left(\frac{\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{AMAX}}}{\theta_{\mathsf{JA}}} \right)$$

Where all terms are previously defined.

Equation 2.

Equation 1 can be used in conjunction with Equation 2 to ensure regulator thermal operation is within limits. For example:

I:
$$V_{INMAX} = 3.8V \pm 5\%$$

 $V_{OUT1_{MIN}} = 3.0V \pm 2.5\%$
 $V_{OUT2_{MIN}} = 2.8V \pm 2.5\%$
 $I_{LOAD1MAN} = 120mA$
 $I_{LOAD2MAX} = 60mA$
 $T_{JMAX} = 125^{\circ}C$
 $T_{AMAX} = 55^{\circ}C$
 $\theta_{JA} = 200^{\circ}C/W$

FIND:

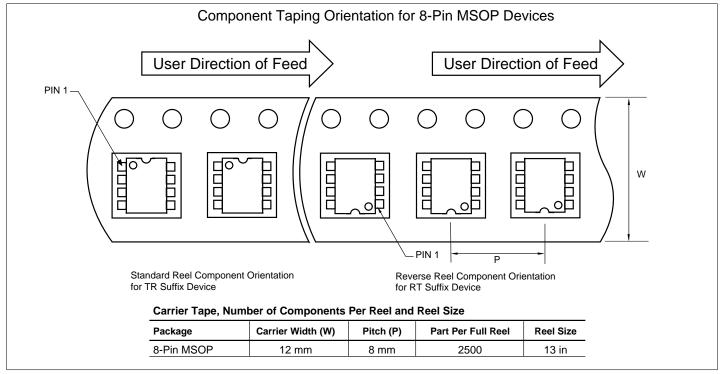
GIVEN

1) Actual power dissipation:

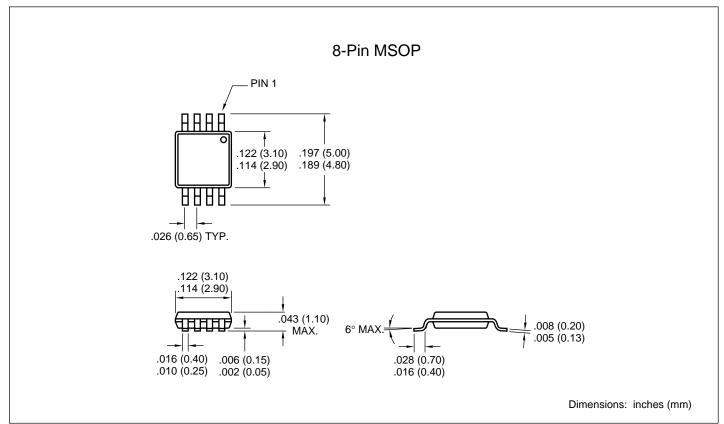
$$\begin{split} \mathsf{P}_{\mathsf{D}} &\approx [(\mathsf{Vin}_{\mathsf{MAX}} - \mathsf{Vout1}_{\mathsf{MIN}}) \times \mathsf{ILOAD1}_{\mathsf{MAX}} \\ &+ [(\mathsf{Vin}_{\mathsf{MAX}} - \mathsf{Vout2}_{\mathsf{MIN}}) \times \mathsf{ILOAD2}_{\mathsf{MAX}} \\ &\quad [(3.8 \times 1.05) - (3.0 \times .975)] \times 120 \times 10^{-3} \\ &+ [(3.8 \times 1.05) - (2.8 \times .975)] \times 60 \times 10^{-3} \end{split}$$

2) Maximum allowable power dissipation:

$$P_{D} \approx \left(\frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}}\right)$$
$$= \frac{(125 - 55)}{200}$$
$$= 350 \text{mW}$$


In this example, the TC1306 dissipates a maximum of only 203.4mW; far below the allowable limit of 350mW. In a similar manner, Equation 1 and Equation 2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable V_{IN} is found by substituting the maximum allowable power dissipation of 350mW into Equation 1, from which V_{INMAX} = 4.6V.

Layout Considerations


The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower θ_{JA} and, therefore, increase the maximum allowable power dissipation limit.

Dual 150mA CMOS LDO With Select Mode[™], Shutdown and RESET Output

TAPE AND REEL DIAGRAMS

PACKAGE DIMENSIONS

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road

Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050 **Chicago**

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton Two Prestige Place, Suite 130 Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175 Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Mountain View Analog Product Sales

1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590 New York

 150 Motor Parkway, Suite 202

 Hauppauge, NY 11788

 Tel: 631-273-5305 Fax: 631-273-5335

 San Jose

 Microchip Technology Inc.

 2107 North First Street, Suite 590

 San Jose, CA 95131

 Tel: 408-436-7950 Fax: 408-436-7955

 Toronto

 6285 Northam Drive, Suite 108

 Mississauga, Ontario L4V 1X5, Canada

 Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

China - Beijing Microchip Technology Beijing Office Unit 915 New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Shanghai Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 Hong Kong Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office **Divyasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, OíShaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor

Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 **Taiwan** Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Australia Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 Denmark Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Arizona Microchip Technology SARL Parc díActivite du Moulin de Massv 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Germany Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchipis products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

01/09/01