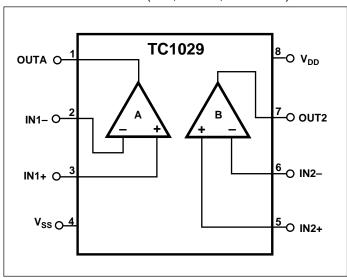


Linear Building Block – Dual Low-Power Op Amp

FEATURES


- **■** Optimized for Single-Supply Operation
- Small Package8-Pin MSOP

 (Occupies Only Half the Area of an 8-Pin SOIC), 8-Pin DIP, and 8-Pin SOIC
- Ultra Low Input Bias Current Less than 100 pA
- Low Quiescent Current 12 µA (Typ.)
- Rail-to-Rail Inputs and Outputs (Operates From Low Supply Voltage While Accommodating Large Input Signals — Yields Larger Output Signals)
- Operates Down to 1.8V

APPLICATIONS

- **■** Power Management Circuits
- Battery Operated Equipment
- Consumer Products

PIN CONFIGURATION (DIP, MSOP, and SOIC)

GENERAL DESCRIPTION

The TC1029 is a dual, CMOS operational amplifier designed for low-power applications.

It is designed specifically for operation from a single supply, however, operation from dual supplies is also possible, and the power supply current drain is independent of the magnitude of the power supply voltage. The TC1029 operates from two 1.5V alkaline cells down to $V_{DD}=1.8V.$ Supply current is only typically 12 $\mu\text{A},$ which significantly extends battery life.

Rail-to-rail inputs and outputs allow operation from low supply voltages while accommodating large input signals, yielding larger output signals.

Packaged in an 8-pin MSOP, SOIC, or DIP, the TC1029 is ideal for battery-operated applications.

ORDERING INFORMATION

Part No.	Package	Temp. Range			
TC1029EPA	8-Pin DIP	– 40°C to +85°C			
TC1029EUA	8-Pin MSOP	– 40°C to +85°C			
TC1029EOA	8-Pin SOIC	– 40°C to +85°C			
TC1043EV Evaluation Kit for Linear Building Block Family					

Linear Building Block – Dual Low-Power Op Amp

TC1029

ABSOLUTE MAXIMUM RATINGS*

ELECTRICAL CHARACTERISTICS: Typical values apply at 25°C, $V_{DD} = 3.0V$. $T_A = -40$ °C to +85°C, $V_{DD} = 1.8V$ to 5.5V, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
$\overline{V_{DD}}$	Supply Voltage		1.8		5.5	V
IQ	Supply Current, Operating	All Outputs Open	_	12	16	μΑ
A _{VOL}	Large Signal Voltage Gain	$R_L = 10 \text{ K}\Omega, V_{DD} = 5 \text{ V}$	_	100	_	V/mV
$\overline{V_{ICMR}}$	Common Mode Input Voltage Range		$V_{SS} - 0.2$	_	V _{DD} +0.2	V
Vos	Input Offset Voltage	$V_{DD} = 3V$, $V_{CM} = 1.5V$, $T_A = 25^{\circ}C$, $T_A = -40^{\circ}C$ to $85^{\circ}C$		±100 ±0.3	±500 ±1.5	μV mV
I _B	Input Bias Current	$T_A = 25$ °C, $V_{CM} = V_{DD}$ to V_{SS}	-100	50	100	pA
V _{OS (DRIFT)}	Average Input Offset Voltage Drift	$V_{DD} = 3V, V_{CM} = 1.5V$	_	4	_	μV/°C
GBWP	Gain-Bandwidth Product	$V_{DD} = 1.8V \text{ to } 5.5V;$ $V_{O} = V_{DD} \text{ to } V_{SS}$	_	90	_	KHz
SR	Slew Rate	$C_L = 100pF$ $R_L = 1M \text{ to GND}$ $Gain = 1$ $V_{IN} = V_{SS} \text{ to } V_{DD}$	_	35	_	mV/μsec
V _{OUT}	Output Signal Swing	$R_L = 10 \text{ K}\Omega,$	V _{SS} + 0.05	_	V _{DD} - 0.05	V
CMRR	Common Mode Rejection Ratio	$T_A = 25$ °C, $V_{DD} = 5$ V; $V_{CM} = V_{DD}$ to V_{SS}	70	_	_	dB
PSRR	Power Supply Rejection Ratio	$T_A = 25$ °C, $V_{CM} = V_{SS}$ $V_{DD} = 1.8$ to 5V	80	_	_	dB
I _{SRC}	Output Source Current	$V_{IN} = V_{DD}$ Output Shorted to V_{SS} $V_{DD} = 1.8V$, Gain = 1	3	_	_	mA
I _{SINK}	Output Sink Current	$V_{IN} = V_{SS}$ Output Shorted to V_{DD} $V_{DD} = 1.8V$, Gain = 1	4	_	_	mA
en	Input Noise Voltage	0.1 Hz to 10 Hz	_	10	_	μVрр
	Input Noise Density	1KHz	_	125	_	nV/√ Hz

^{*} Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

DETAILED DESCRIPTION

The TC1029 is one of a series of very low power, Linear Building Block products for low voltage single supply operations. The TC1029 contains two rail to rail op amps which operate down to 1.8V with a maximum supply current of 16 μA . The amplifier's input range extends beyond both supplies by 200 mV and the outputs will swing to within several millivolts of the supplies depending on the load current being driven.

The amplifier design is such that large signal gain, slew rate and bandwidth are largely independent of supply voltage. The low input bias current and offset voltage of the TC1029 make it suitable for precision applications.

TYPICAL APPLICATIONS

The TC1029 lends itself to a wide variety of applications, particularly in battery-powered systems. It typically finds application in power management, processor supervisory, and interface circuitry.

Voice Band Receive Filter

The majority of spectral energy for human voices is found to be in a 2.7 KHz frequency band from 300 Hz to 3 KHz. To properly recover a voice signal in applications such as radios, cellular phones, and voice pagers, a low-power bandpass filter matched to the human voice spectrum can be implemented using Microchip's CMOS op amps. Figure 1 shows a unity gain multi-pole Butterworth filter with ripple less than 0.15 dB in the human voice band. The lower 3 dB cut-off frequency is 70 Hz (single order response) while the upper cut-off frequency is 3.5 KHz (fourth order response).

Supervisory Audio Tone (SAT) Filter for Cellular

Supervisory Audio Tones (SAT) provide a reliable transmission path between cellular subscriber units and base stations. The SAT tone functions much like the current/voltage used in land line telephone systems to indicate that a phone is off the hook. The SAT tone may be one of three frequencies: 5970, 6000, or 6030 Hz. A loss of SAT implies that channel conditions are impaired and if SAT is interrupted for more than 5 seconds a cellular call is terminated.

Figure 2 shows high Q (30) second order SAT detection bandpass filter using Microchip's CMOS op amp architecture. This circuit nulls all frequencies except the three SAT tones of interest.

EVALUATION KIT

The TC1043EV consists of a four-inch by six-inch prewired application circuit board. Pre-configured circuits include a pulse width modulator, wake-up timer, function generator, and others. On-board current meter terminals, voltage regulator, and a user-prototyping area speed circuit development. Please contact your local Microchip Semiconductor representative for more information.

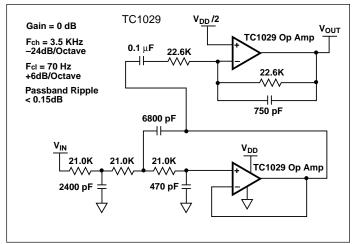
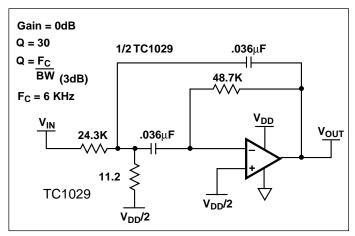
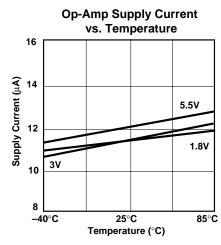
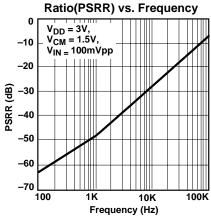
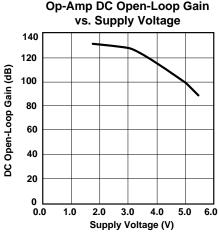


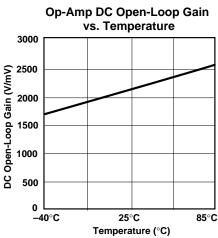
Figure 1. Multi-Pole Butterworth Voice Band Receive Filter

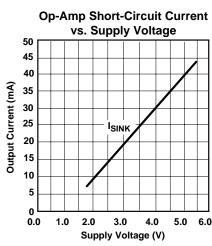



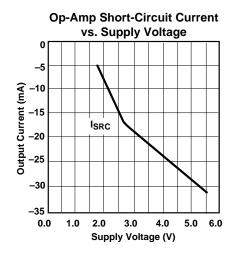

Figure 2. Second Order SAT Bandpass Filter

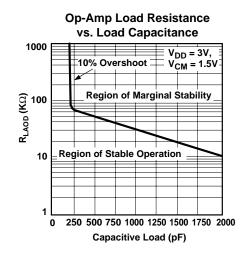
TC1029

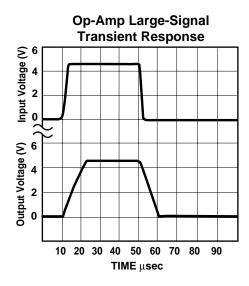

TYPICAL CHARACTERISTICS CURVES

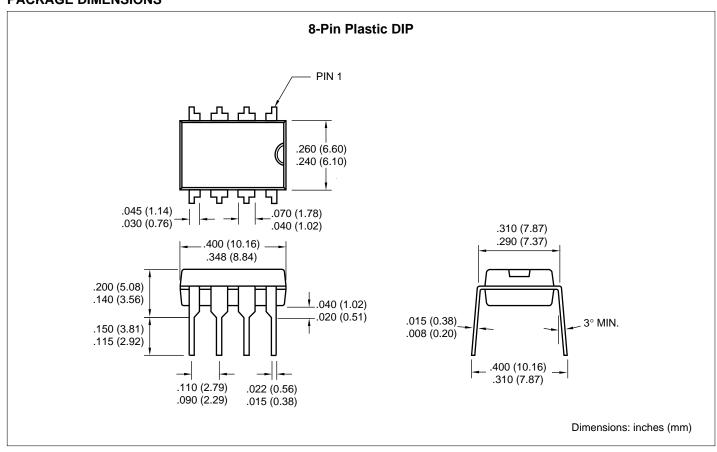


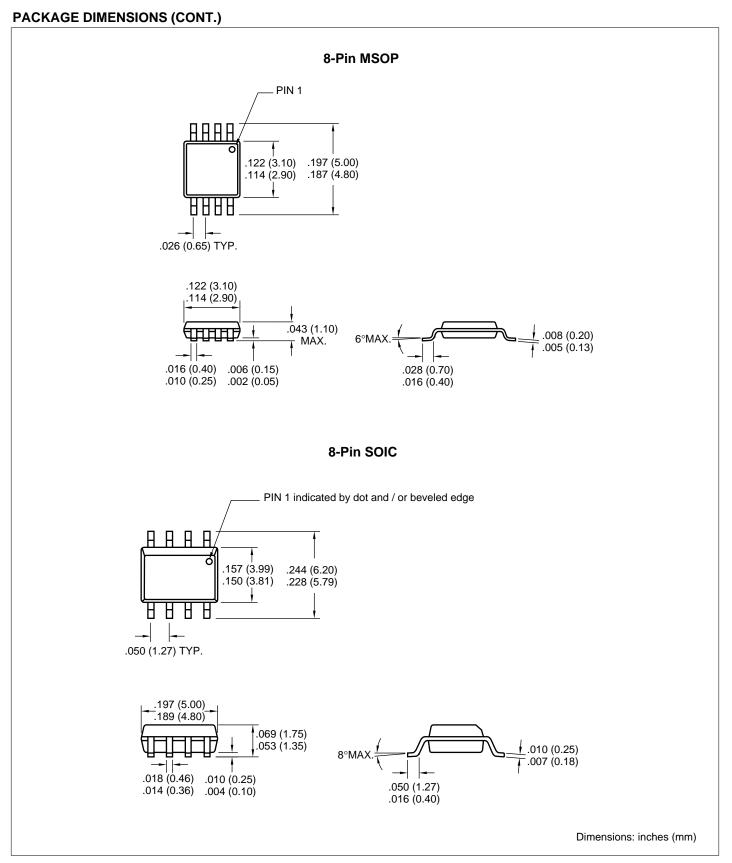





Op-Amp Power Supply Rejection






TYPICAL CHARACTERISTICS CURVES

PACKAGE DIMENSIONS

TC1029

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston

Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Mountain View

Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

China - Beijing

Microchip Technology Beijing Office Unit 915 New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie

Beijing, 100027, No. China

Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, OiShaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

Arizona Microchip Technology SARL Parc díActivite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Germany

Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.