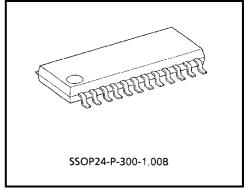
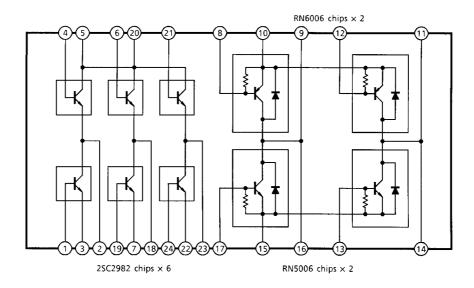
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT MULTI-CHIP

TA8486F


DRIVER FOR LOW-SATURATION VOLTAGE MOTORS

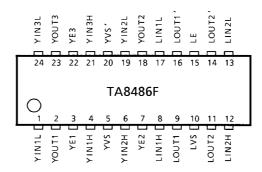
The TA8486F is a multi-chip IC containing ten low-saturation voltage discrete transistors.

The TA8486F is perfect as a driver for low–saturation driven motor drive transistors. 2.0 A is possible as the output current. Care must be taken over thermal conditions during usage.


FEATURES

- Most suitable as a high-efficiency motor driver circuit
- Enclosed in a compact package: SSOP24.

Weight: 0.27 g (Typ.)


BLOCK DIAGRAM

Note: Short circuiting between output and line to ground faults may result in damage to the IC. Ensure that great care is taken during the design of the output line, V_{CC} (V_M, V_S, V_{EE}) and the GND line.

1

PIN ASSIGNMENTS (TOP VIEW)

MAXIMUM RATINGS (Ta = 25°C)

H-bridge

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Power Voltage	V _{CC}	10	V	
Voltage Between the Collector and Base	V _{CBO}	10	V	
Voltage Between the Collector and Emitter	V _{CER}	10	V	
Voltage Between the Emitter and Base	V _{EBO}	6	V	
Output Transistor Current	lout	2	Α	
Base Current	Ι _Β	±0.4	Α	
Diode Forward Current	I _F	2 (Note 1)	Α	
Power Dissipation	PD	830 (Note 2)	mW	
Connection Temperature	Tj	150	°C	
Operating Temperature	T _{opr}	-40~85	°C	
Storage Temperature	T _{stg}	-55~150	°C	

Note 1: T = 10 ms one-shot pulse

Note 2: Unit (package total)

Three-phase motor

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Power Voltage	V _{CC}	15	V	
Voltage Between the Collector and Base	V _{CBO}	15	V	
Voltage Between the Collector and Emitter	V _{CER}	15	V	
Voltage Between the Emitter and Base	V _{EBO}	6	V	
Output Transistor Current	Io	2	Α	
Base Current	Ι _Β	0.4	Α	
Power Dissipation	PD	830 (Note 1)	mW	
Connection Temperature	Tj	150	°C	
Operating Temperature	T _{opr}	-40~85	°C	
Storage Temperature	T _{stg}	-55~150	°C	

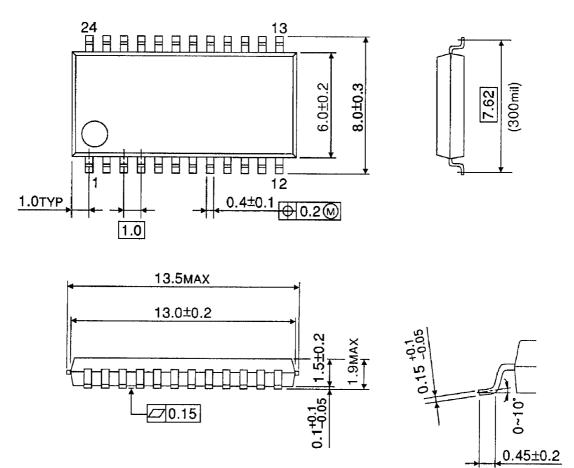
Note 1: Unit (package total)

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

H-bridge

CHARACTERISTICS		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Direct Current Amplification		h _{FE (1)}	_	V_{CE} = 1 V, I_{C} = 0.5 A	160	_	600	_
		h _{FE (2)}	_	V _{CE} = 1 V, I _C = 2.0 A	60	130	_	
Output Saturation Voltage	Upper	VCE (sat)	_	$I_C = -1 \text{ A}, I_B = -25 \text{ mA}$	_	-0.15	-0.25	V
	Lower			I _C = 1 A, I _B = 25 mA	_	0.25	0.35	
	Upper and Lower			I _C = 1 A, I _B = 25 mA	_	0.4	0.6	
Transition Frequency		f _T	_	V _{CE} = 2 V, I _C = 0.5 A	_	150	_	MHz
Outrot Leals Ourse	Upper	l _{OL}	_	V _{CC} = −10 V	_	0	-5	μA
Output Leak Current	Lower			V _{CC} = 10 V	_	0	5	
Diode Forward Voltage	Upper	V _F	_	I _F = 300 mA	_	1.1	1.3	V
	Lower			I _F = 300 mA	_	1.1	1.3	
Resistance Between the Base and Emitter		R _{BE}	_	-	7	10	13	kΩ
Voltage Between the Base and Emitter		V _{BE} (PNP)	_	$V_{CE} = -1 \text{ V, } I_{C} = -2 \text{ A}$	_	-0.84	-1.5	V
		V _{BE (NPN)}	_	V _{CE} = 1 V, 1 _C = 2 A	_	0.84	1.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

3



Three-phase motor

CHARACTERISTICS		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Direct Current Amplification		h _{FE (1)}	_	V _{CE} = 0.4 V, I _C = 30 mA	160	_	600	_
		h _{FE (2)}	_	V _{CE} = 0.4 V, I _C = 0.2 A	160	_	600	
h _{FE} Ratio		h _{FE (1)} / h _{FE (2)}	_	V _{CE} = 0.4 V, I _C = 30 mA / V _{CE} = 0.4 V, I _C = 0.2 A	0.75	_	1.25	_
Output Saturation Voltage	Upper	VCE (sat)	_	I _C = 1 A, I _B = 25 mA	_	0.2	0.35	V
	Lower			I _C = 1 A, I _B = 25 mA	_	0.2	0.35	
	Upper and Lower			I _C = 1 A, I _B = 25 mA	_	0.4	0.7	
Transition Frequency		f _T	_	V _{CE} = 2 V, I _C = 0.5 A	_	140	_	MHz
Output Leak Current	Upper	l _{OL} –	_	V _{CC} = 15 V	_	0	10	μА
	Lower			V _{CC} = 15 V	_	0	10	
Voltage Between the Base and Emitter		V _{BE} (NPN)	_	V _{CE} = 1 V, I _C = 2 A		0.84	1.5	V

PACKAGE DIMENSIONS

SSOP24-P-300-1.00B Unit: mm

Weight: 0.27 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.