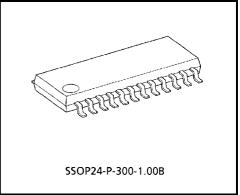
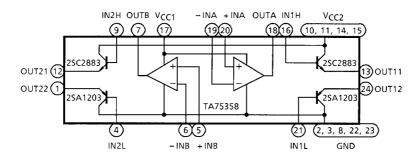
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT MULTI-CHIP


TA8461F

DUAL POWER OPERATIONAL AMPLIFIER

The TA8461F is a multiple chip IC consisting of 4 saturated voltage discrete transistors and 1 dual operational amplifier.


FEATURES

- Large Output Current : I_{OUT} = 1.5A (MAX.)
- Sealed in a Small Package : SSOP24

BLOCK DIAGRAM

Weight: 0.27 g (Typ.)

PIN CONNECTION

OUT22 [1	24] OUT12
GND [2	23] GND
GND [3	22] GND
IN2L	4	21	IN1L
+INB [5	20] + INA
-INB [6	19	
оитв [7	18] Ουτά
GND [8	17] v _{cc1}
IN2H [9	16] імтн
vcc₂ [10	15] v _{CC2}
vcc₂ [11	14] v _{cc₂}
ουτ21 [12	13] OUT11

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION			
1	OUT22	PNP (2) Emitter			
2	GND	GND			
3	GND	GND			
4	IN2L	PNP (2) Base			
5	+INB	OP. Amp (B) input (+)			
6	-INB	OP. Amp (B) input (-)			
7	OUTB	OP. Amp (B) output			
8	GND	GNB			
9	IN2H	NPN (2) Base			
10	V _{CC2}	Output transistor voltage supply			
11	V _{CC2}	Output transistor voltage supply			
12	OUT21	NPN (2) Emitter			
13	OUT11	NPN (1) Emitter			
14	V _{CC2}	Output transistor voltage supply			
15	V _{CC2}	Output transistor voltage supply			
16	IN1H	NPN (1) Base			
17	V _{CC1}	OP. Amp. voltage supply			
18	OUTA	OP. Amp. (A) output			
19	-INA	OP. Amp. (A) input (-)			
20	+INA	OP. Amp. (A) input (+)			
21	IN1L	PNP (1) Base			
22	GND	GND			
23	GND	GND			
24	OUT12	PNP (1) Emitter			

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT
Supply Voltage		V _{CC}	30	V
Output Transistor	Collecto-Base Voltage	V _{CBO}	30	V
	Collector-Emitter Voltage	V _{CEO}	30	V
	Emitter-Base Voltage	V _{EBO}	5	V
	Output Current	IOUT (AVE.)	1.5	А
	Output Current	IOUT (PEAK)	3.0 (Note 1)	A
	Base Current	Ι _Β	0.3	А
	Amplifier Differential Input Voltage	DVIN	30	V
OP. Amp.	Amplifier Input Voltage	VIN	30	V
Power Dissipation		PD	1.0 (Note 2)	W
Junction Temperature		Тj	125	°C
Operating Temperature		T _{opr}	-40~85	°C
Storage Temperature		T _{stg}	-55~125	°C

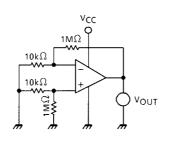
Note 1: Pulse measured:

Pulse width = 10 ms (MAX.)

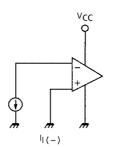
Repetition cycle = 30% (MAX.)

Note 2: No heat sink

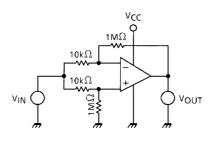
ELECTRICAL CHARACTERISTICS Output transistor unit (Ta = 25°C)

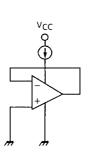

CHARACTERISTIC	SYMBOL	TEST CIRC UIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Current Amplification Factor	h _{FE (1)}	_	V _{CE} = 2 V, I _C = 0.5 A	160		600	
	h _{FE (2)}	_	V _{CE} = 2 V, I _C = 1.5 A	50	100	—	
Output Saturation Voltage	V _{CE (sat)} (NPN)	—	I _C = 0.5 A, I _B = 10 mA	-	0.2	0.50	V
			I _C = 1.5 A, I _B = 30 mA	_	-	2.0	
	V _{CE (sat)} (PNP)	_	I _C = 0.5 A, I _B = 10 mA	_	0.2	0.50	
			I _C = 1.5 A, I _B = 30 mA	_	_	2.0	
Transition Frequency	f _T	_	V _{CE} = 2 V, I _C = 0.5A	_	120	_	MHz
Output Leakage Current	I _{OL} (NPN)	_	V _{CC} = 30 V	_	0	10	
	I _{OL} (PNP)	_	V _{CC} = 30 V	_	0	10	μA
Base-Emitter Voltage	V _{BE} (NPN)	_	V _{CE} = 2 V, I _C = 0.5 A	_	_	1.0	v
	V _{BE} (PNP)	_	V _{CE} = 2 V, I _C = 0.5 A	_	_	1.0	v

Operational amplifier unit (V_{CC} = 5 V, Ta = 25°C)

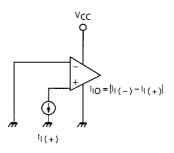

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	1	R _g ≤ 10 kΩ	_	2	7	mV
Input Offset Current	I _{IO}	2	—	-	5	50	nA
Input Bias Current	l	2	—	_	45	250	nA
In-Phase Input Voltage	CMVIN	3	V _{CC} = 30 V	0	_	V _{CC} −1.5	V
Supply Current	Icc	4	R _L = ∞, ALL OP Amps	_	0.7	1.2	mA
Voltage Gain	GV	5	R _L ≥ 2 kΩ	86	100		dB
Maximum Output Amplitude Voltage	V _{Op-p}	6	R _L = 2 kΩ	0	_	V _{CC} −1.5	V
Common Mode Rejection Ratio	CMRR	3	—	60	85	_	dB
Supply Voltage Rejection Ratio	SVRR	1	R _g ≤ 10 kΩ	60	100	_	dB
Source Current	I _{source}	6	$IN (-) = 0V_{DC}, IN (+) = 1V_{DC}$	20	40	_	mA
Sink Current	l _{sink}	6	$IN (-) = 0V_{DC}, IN (+) = 1V_{DC}$	10	20	_	mA
Cut-off Frequency	f _T	_	—	—	1.5	_	MHz
Slew Rate	S _R	—	—	—	0.8	—	V / µs

TEST CIRCUIT 1

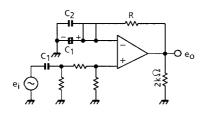

(1) V_{IO} , SVRR


(2) II, IIO

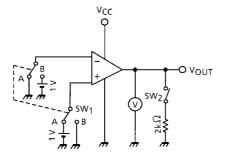
(3) C_{MVIN}, C_{MRR}


(4) Icc

- V_{IO} = V_{OUT} / 100
- SVRR = 20 log E (dB)


$$\mathsf{E} = \left| \frac{\mathsf{V}_{\mathsf{OUT1}} - \mathsf{V}_{\mathsf{OUT2}}}{\mathsf{V}_{\mathsf{CC1}} - \mathsf{V}_{\mathsf{CC2}}} \right| \times \frac{1}{100}$$

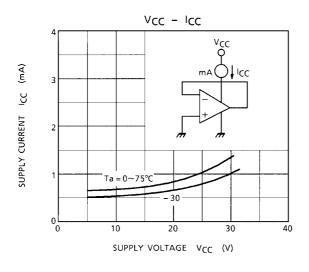
Vout1: Vout (V_{CC1} = 5 V) Vout2: Vout (V_{CC2} = 10 V)

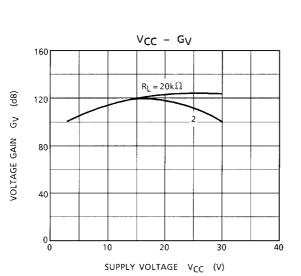


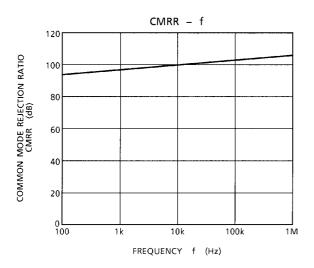
- CMRR = 20 log G_D / _{GC} (dB)
 G_D: Differential Voltage Gain
 G_C: In-phase Voltage Gain
- CMV_{IN} : V_{IN} = 0_V, V_{CC} 1.5 V
- I_{CC}: VCC = 5 V

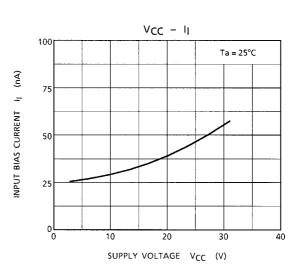
(5) G_V

(6) V_{Op-p}, I_{source}, Isink

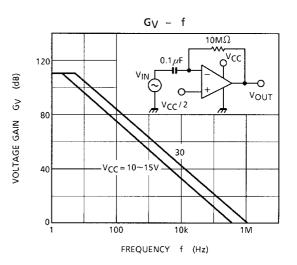

• G_V = 20 log _{eo} / _{ei} (dB)

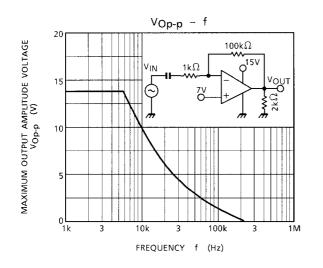

 $R > 1 / W_{C1}$

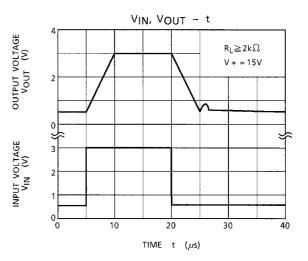

- $C_1: \ For \ Preventing \ DC \ Short-Circuit.$
- C₂ : For High Frequency Short-Circuit. Use a Mica or Titanium Capacitor.
- V_{Op-p} V_{OH} : SW₁ is to A side. V_{OL} : SW₁ is to B side.
- Isource SW_1 is to A side. $V_{OUT} \rightarrow 0 V$ Measurement
 - I_{sink} SW₁ is to B side. V_{OUT} \rightarrow 5 V Measurement

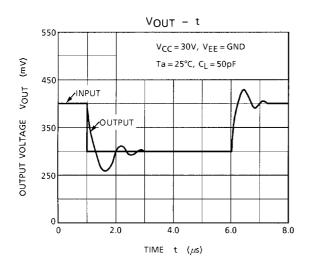

CHARACTERISTIC CURVES (Ta = 25°C)

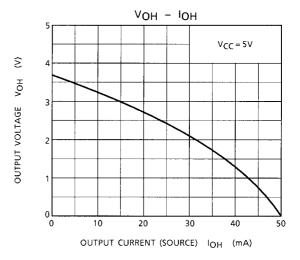
(1) Operational amplifier

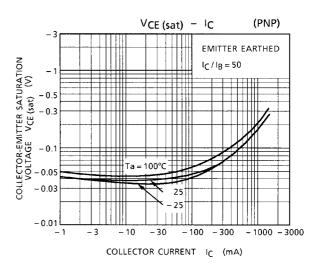


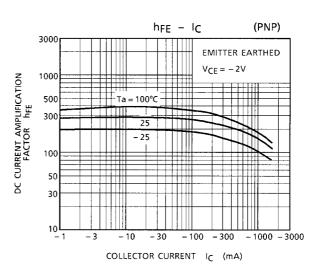


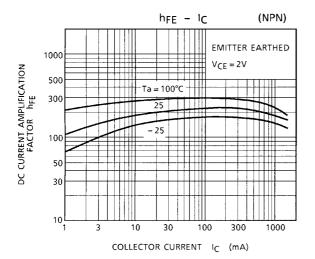


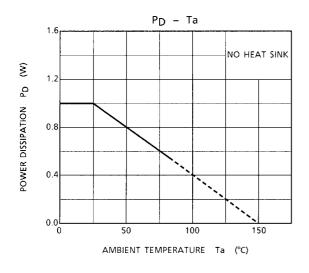


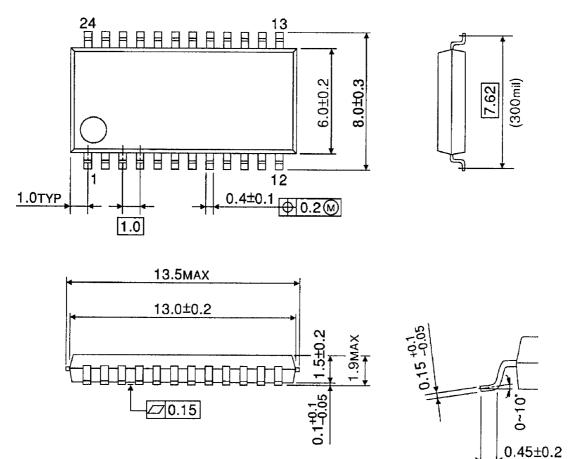









(2) NPN transistor, PNP transistor



PACKAGE DIMENSIONS

SSOP24-P-300-1.00B

Unit : mm

Weight : 0.27 g (Typ.)

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.