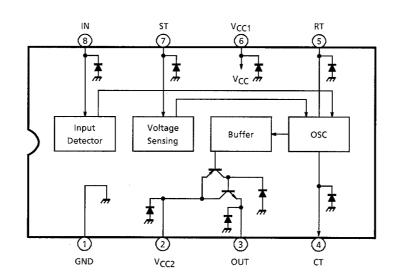
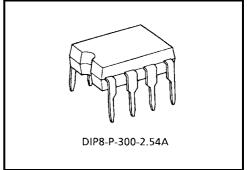
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA8026AP

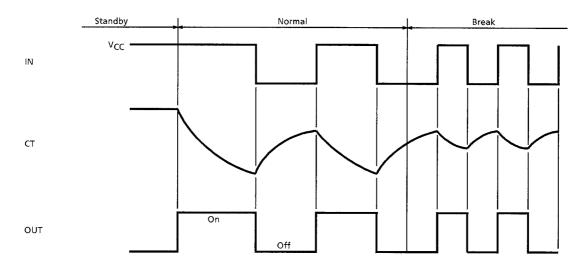
FLASHER CONTROLLER


The TA8026AP is designed as an automotive flasher controller. It can issue a rapied-flashing warning when a lamp failure occurs. It operates accurately in wide ranges of supply voltages and operating temperatures. It incorporates an accurate reference voltage circuit which compensates for lamp current characteristic variations due to supply voltage changes.

FEATURES

- Large output current : I_{OUT} = 300mA (Max.)
- Low standby current $: I_{CC} = 1.0 \text{mA} (Typ.)$
- Reference voltage characterized by small temperature drift.
- Built-in circuit that compensates for variations in lamp voltage characteristics.
- Output from combination of PNP and NPN transistors with suppression diode.
- Wide operating temperature : Ta = -40 to 110°C
- DIP -8 pin.

BLOCK DIAGRAM AND PIN LAYOUT



Weight: 0.45 g (typ.)

PIN DESCRIPTION

PIN No.	SYMBOL	DESCRIPTION
1	GND	Grounded
2	V _{CC2}	Power supply pin (2)
3	OUT	Open-emitter output of complementary combination of PNP and NPN transistors.
4	СТ	A capacitor is connected between V_{CC} and CT. This layout determines the flashing interval of the flasher.
5	RT	A resistor is connected between RT and CT. This layout determines the flashing interval of the flasher.
6	V _{CC1}	Power supply pin (1)
7	ST	Current detection pin. The lamp current is detected through a shunt resistor connected between V_{CC1} and ST.
8	IN	Detection pin for lamp operation.

TIMING CHART

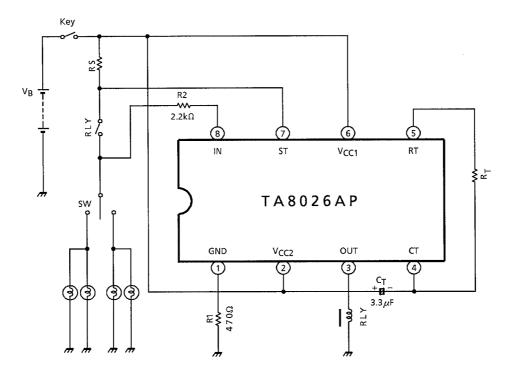
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	V _{CC}	28	V	
Power Dissipation	PD	300 *	mW	
Output Current	IOUT	300	mA	
Input Voltage	V _{IN}	-0.3~V _{CC}	V	
Operating Temperature	T _{opr}	-40~110	°C	
Storage Temperature	T _{stg}	-55~150	°C	
Lead Temperature-Time	T _{sol}	260 (10s)	°C	

*: Ta ≤110°C

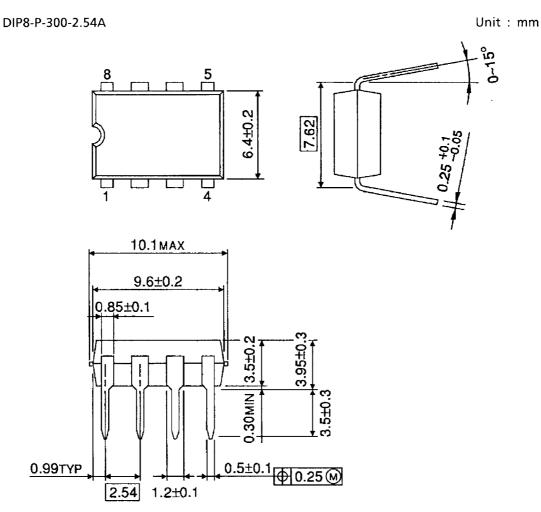
ELECTRICAL CHARACTERISTICS (V_{CC} = 12V, Ta = -40~110°C)

CHARACTERISTIC	SYMBOL	PIN	TEST CONDITION	MIN	TYP.	MAX	UNIT
Operating Voltage	V _{opr}	V _{CC}		6	—	18	V
Current Consumption		GND	Standby, Ta = 25°C	0.6	0.9	1.4	mV
Current Consumption	ICC		Output on, Ta = 25°C	2.5	4.0	6.0	
Output Voltage	V _{OH}	OUT	R _L = 82Ω	_	_	1.3	V
Leakage Current	I _{LEAK}	OUT	V _{OUT} = 0V	-100	—	_	μA
		СТ	$V_{IN} = V_{CC} \sim V_{CC} - 5V$	-10	—	10	μΑ
Input Current	I _{IN}	ST	V _{IN} = V _{CC}	-10	—	10	
Input Current		IN	V _{IN} = 12V	_	_	20	
			V _{IN} = 0V	-1.5	-2.5	-3.5	mA
Input Voltage	V _{IL}	IN		_	_	0.4	×V _{CC}
input voltage	VIH	IIN		0.6	_	_	
	V _{TH}	- ST	V _{CC} = 8V	16	21	26	mV
			V _{CC} = 11V	25	31	37	
Detection Voltage			V _{CC} = 14V	30	36	42	
Delection voltage	ΔV_{TH} / T			-60	_	60	μV/ °C
	ΔV _{TH} / ΔV _{CC}			2.7	3.3	3.9	mV/ V
		ST	V _{CC} = 8V	3	7	11	mV
Condition Detect Voltage *1	V _{THO}		V _{CC} = 11V	5	10	15	
			V _{CC} = 16V	8	13	18	
Flashing Interval		OUT		690	706	723	ms
Flashing Interval (At fail detection)		OUT	Ст = 3.3uF. Rт = ADJ *2	315	324	333	
On Duty		OUT	$-C_{T} = 3.3 \mu F, R_{T} = ADJ$ *2	45	50	55	%
On Duty (At fail detection)		OUT		30	_	50	


* 1: The minimum detection voltage to be able to operate.

* 2 : Adjust the flashing interval to 706ms by changing RT while keeping $C_T = 3.3 \mu F$ at room temperature.

FLASHING FREQUENCY CHARACTERISTICS DETECTION VOLTAGE CHARACTERISTICS 200 80 $V_{CC} = 11V$ 160 60 50 (%) () () 40 C/M 40 120 ΡΠΤΥ DUTY VTH 30 20 80 20 10 40L ___0 80 20 40 60 8 10 16 18 12 14 DETECTION VOLTAGE (mV) $V_{CC} \langle V \rangle$


2002-02-27

EXAMPLE OF APPLICATION CIRCUIT

Note: The tolerance of R1 and R2 is within ±5%.

PACKAGE DIMENSIONS

Weight: 0.45g (Typ.)

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

000707EAA_S

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.