TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA8004SA

5 V Low Dropout Regulator with Reset Timer

The TA8004SA is a 5 V regulator which handles 400 mA (max) of output current.

This IC generates a reset signal to reset the system when power is supplied or the 5 V output voltage lowers to 85% or less of normal output voltage due to the external disturbances.

Features

- Maximum output current: 400 mA (max)
- Low dropout voltage: 0.6 V (max)
- Multi protection

Power supply reverse connection
Function for overvoltage
Thermal protection
Short-circuit protection

- Internal power ON reset timer
- TO-220N (IS) 5 pin package

Block Diagram

Weight

SSIP5-P-1.70C : 2.1 g (typ.)
ZIP5-P-1.70L : 2.1 g (typ.)
ZIP5-P-1.70K : 2.1 g (typ.)

Pin Descriptions

Pin No.	Symbol	
1	IN	Power supply pin
2	OUT	The 5 V output pin with maximum output current 400 mA
3	GND	Ground pin
4	TC	Terminal to set the reset timer. A capacitor is connected between this pin and GND.
5	RESET	Collector output of an NPN transistor with built-in pull-up resistor. This pin is put at LOW level at output voltage below 85\% of a prescribed level and after output voltage becomes above 85\% of a prescribed level, a reset signal for the time set at the TC pin.

Timing Chart

Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Rating	Unit
Input voltage		$\mathrm{V}_{\text {IN }}$	-20~60	V
Power dissipation	$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	P_{D}	2	W
	$\left(\mathrm{Tc}=25^{\circ} \mathrm{C}\right)$		20	
Operating temperature		Topr	-40~85	${ }^{\circ} \mathrm{C}$
Storage temperatu		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$
Soldering temperature • time		$\mathrm{T}_{\text {sol }}$	260 (10 s)	${ }^{\circ} \mathrm{C}$
Thermal resistance		$\mathrm{R}_{\text {th (}}^{\text {(j-c) }}$	6.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		$\mathrm{R}_{\text {th (j-a) }}$	62.5	

Electrical Characteristics (unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=\mathbf{1 4} \mathrm{V}$, IOUT $=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Pin	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output voltage	V OUT	OUT	-	$\begin{aligned} & 5.35 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 26 \mathrm{~V} \\ & \text { lout }=10 \mathrm{~mA} \end{aligned}$	4.8	5.0	5.2	V
				$\begin{aligned} & \hline 5.35 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{IN}} \leqq 26 \mathrm{~V} \\ & \mathrm{louT}=10 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 85^{\circ} \mathrm{C} \end{aligned}$	4.5	5.0	5.5	
Line regulation	Reg-Line	OUT	-	$\begin{aligned} & \hline 10 \mathrm{~V} \leqq \mathrm{~V}_{\mathbb{I N}} \leqq 17 \mathrm{~V} \\ & \text { lout }=200 \mathrm{~mA} \\ & \hline \end{aligned}$	-	4	50	mV
				$\begin{array}{\|l} \hline 7 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 26 \mathrm{~V} \\ \text { lout }=200 \mathrm{~mA} \\ \hline \end{array}$	-	10	70	
Load regulation	Reg-Load	OUT	-	$10 \mathrm{~mA} \leqq \mathrm{l}$ OUT $\leqq 200 \mathrm{~mA}$	-	35	150	mV
Quiescent current	IB	GND	-	$6 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 26 \mathrm{~V}$, IOUT $=0$	-	1.7	3	mA
				$\mathrm{V}_{\text {IN }}=14 \mathrm{~V}$, IOUT $=200 \mathrm{~mA}$	-	10	-	
Dropout voltage	V DROP	IN/OUT	-	IOUT $=50 \mathrm{~mA}$	-	0.08	0.2	V
				IOUT $=400 \mathrm{~mA}$	-	0.3	0.6	
Maximum operating input voltage	$\mathrm{V}_{\text {IN }}$	IN	-	-	29	32	-	V
Reset voltage (H)	$\mathrm{V}_{\text {RST (H) }}$	RST	-	-	4.5	5	5.5	V
Reset voltage (L)	$\mathrm{V}_{\mathrm{RST} \text { (} \mathrm{L})}$	RST	-	$\mathrm{ISINK}=2.5 \mathrm{~mA}$	-	0.15	0.4	V
Delay time	TRST	RST	-	-	-	$0.3 \times$ Ctc ($\mu \mathrm{F}$)	-	s
TC threshold	$\mathrm{V}_{\text {TH }}$	TC	-	-	-	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {OUT }} \\ \times 60 \% \end{array}$	-	V
Delay current	$\mathrm{I}_{\text {TC }}$	TC	-	-	5	12	25	$\mu \mathrm{A}$
VOUT threshold	$\mathrm{V}_{\text {TH }}$	OUT	-	-	-	$\mathrm{V}_{\text {OUT }}$ $\times 85 \%$	-	V

Application Circuit

*: Capacitor COUT must be guaranteed to operate of the temperature range that the regulator should be operated correctly.
The equivalent series resistance (ESR) of COUT must be less than 1Ω in operating temperature range.

Package Dimensions

SSIP5-P-1.70C
Unit : mm

Weight: 2.1 g (typ.)

Package Dimensions

ZIP5-P-1.70L

Weight: 2.1 g (typ.)

Package Dimensions

ZIP5-P-1.70K

Unit : mm

Weight: 2.1 g (typ.)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

