TV SOUND MULTIPLEX BROADCAST DEMODULATOR IC FOR EIAJ SYSTEM

The TA1230Z incorporates the functions required for EIAJ system TV sound multiplex broadcast demodulation and a trap for eliminating facsimile broadcast signals multiplexed in the sound multiplex broadcasting band. Automatic adjustment based on a 32 fH -oscillator makes adjustments other than separation unnecessary.

FEATURES

- Self-adjusting filter and discriminator circuit based on a 32 $\mathrm{f}_{\mathrm{H}}{ }^{-}$oscillator
- Built-in trap eliminates facsimile broadcast signals

BLOCK DIAGRAM

000707EBA1

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

PIN FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
1	Q signal offset cancellation	Cuts the DC component of the circuit shaping the waveform of the AM-detected cue signal. Connect a 0.1 $\mu \mathrm{F}$ capacitor between this pin and GND. A $0.01 \mu \mathrm{~F}$ capacitor may cause lower discrimination sensitivity because of the fluctuations in a capacitor of that rating.	
2	GND	-	-
3	Forced mono	Setting this pin to 5 V forcibly sets the mode to mono. This does not affect the discrimination output or bilingual broadcast decoding. As this is the PNP transistor input circuit, leaving the pin open sets the mode to forced mono. However, do not leave the pin open.	
4	Mode switching	The voltage of this pin is used to control the output state for bilingual broadcasting. 0 V : Main sound 2.5 V : Main / sub sound 5 V : Sub sound 9 V : Main / sub sound	
5	Sub offset elimination	Cuts the DC component of the sub sound signal processing section. Connect a $10 \mu \mathrm{~F}$ capacitor between this pin and GND.	
6	Main offset elimination	Cuts the DC component of the main-sound signal processing section. Connect a $10 \mu \mathrm{~F}$ capacitor between this pin and GND.	

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
7	Mute	Setting this pin to 5 V mutes all the outputs. Normally, fix to GND.	
$\begin{gathered} 8 \\ 9 \\ 10 \end{gathered}$	R output L output Mono output	Output pins. A mono sound signal is output from pin 10 regardless of the state of pins 3 and 4 and the broadcasting mode. Set so that the maximum current output from these pins does not exceed $500 \mu \mathrm{~A}$.	
11	GND	-	-
12	MPX input	Sound multiplex signal input pin. The input resistance is $10 \mathrm{k} \Omega$ (Typ.). The standard input level is 250 mV rms (Equivalent to 100% modulation)	
13	Limiter offset elimination	Cuts the DC component of the sub-sound signal demodulation section. Connect a $0.01 \mu \mathrm{~F}$ capacitor between this pin and GND.	
14	V_{CC}	The operating power supply voltage range is $9 \mathrm{~V} \pm 10 \%$.	-
15	Filter control	Used for the automatic filter adjustment circuit incorporated into the IC. Connect a $0.01 \mu \mathrm{~F}$ capacitor between this pin and GND.	
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	Stereo discrimination output Bilingual discrimination output	Broadcast mode discrimination output pins. This circuit is an open collector whose maximum sink current is 1 mA .	

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
18	Bias	Eliminates IC internal bias noise. Connect a $10 \mu \mathrm{~F}$ capacitor between this pin and GND.	
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	32 fH oscillation	Ceramic oscillator connecting pins. TA1230Z uses this oscillation to automatically adjust the internal filter and to perform discrimination. Use a Murata CSB503E7 ceramic oscillator.	

ABSOLUTE RATINGS $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V_{CC}	15	V
Power Dissipation	PD_{D}	890	mW
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	$-20 \sim 75$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{str}}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: The power dissipation rating drops by 7.2 mW for every $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

OPERATING SUPPLY VOLTAGE

PIN No.	PIN NAME	MIN	TYP.	MAX	UNIT
14	VCC	8.1	9.0	9.9	V

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $\mathrm{V}_{\mathrm{Cc}}=\mathbf{9 \mathrm { V } , \mathbf { T a } = \mathbf { 2 5 } { } ^ { \circ } \mathrm { C } \text {) } { } ^ { \text { (} } \text { (}}$ DC CHARACTERISTICS

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Current Dissipation	ICC	-	-	28	34	42	mA
Pin Voltage	V_{1}	-	-	4.2	5.2	6.2	V
	V_{5}	-	-	3.5	4.5	5.5	
	V_{6}	-	-	3.5	4.5	5.5	
	V_{8}	-	-	2.1	3.1	4.1	
	V_{9}	-	-	2.1	3.1	4.1	
	V_{10}	-	-	2.1	3.1	4.1	
	V_{12}	-	-	3.5	4.5	5.5	
	V_{13}	-	-	2.8	3.9	4.9	
	V_{15}	-	-	2.5	4.5	6.5	
	V_{18}	-	-	5.0	5.7	6.4	
	V_{19}	-	-	3.5	4.5	5.5	
	V_{20}	-	-	7.0	7.6	8.2	

AC CHARACTERISTICS

CHARACTERISTIC		SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Level		Vout	-	(Note 1)	500	600	700	mV rms
Output Level Fluctuation		$\Delta \mathrm{V}_{\text {OUT }}$	-	(Note 2)	-	0.0	1.5	dB
Sub Output Level Power Dependency		$\Delta \mathrm{VSUB}$	-	(Note 3)	-	0.0	0.5	dB
Frequency Characteristics	Main Sound 100 Hz	A100 M	-	(Note 4)	0.0	1.0	2.5	dB
	Main Sound 10 kHz	A10k M	-		-16	-13	-10	
	Sub Sound 100 Hz	A100 S	-		0.0	1.0	2.5	
	Sub Sound 10 kHz	A10k S	-		-16	-13	-10	
Total Harmonic Distortion	Main Sound	THD M	-	(Note 5)	-	0.2	1.0	\%
	Sub Sound	THD S	-		-	0.7	1.0	
S / N	Main Sound	S / N M	-	(Note 6)	70	75	-	dB
	Sub Sound	S/NS	-		60	65	-	
Carrier Leakage	Main Sound	VLeak M	-	(Note 7)	-	50	70	mVp-p
	Sub Sound	VLeak S	-		-	50	70	
Stereo Separation		Sepa	-	(Note 8)	34	-	-	dB
Bilingual Crosstalk		CT	-	(Note 9)	60	-	-	dB
Bilingual Mode Switching Voltage	Main (Max.)	Vmax M	-	(Note 10)	1.0	-	-	V
	Main / Sub (1) (Min.)	Vmin B (1)	-		-	-	1.2	
	$\begin{aligned} & \text { Main / Sub (1) } \\ & \text { (Max.) } \end{aligned}$	Vmax B (1)	-		2.9	-	-	
	Sub (Min.)	V min S	-		-	-	4.2	
	Sub (Max.)	V max S	-		5.4	-	-	
	Main / Sub (2) (Min.)	$V \mathrm{~min}$ B (2)	-		-	-	6.6	
Forced Mono Voltage	Off Voltage	Vmin FMono	-	(Note 11)	2.4	-	-	V
	On Voltage	Vmax FMono	-		-	-	2.6	
Mute on Voltage		\checkmark Mute	-	(Note 12)	-	-	2.0	V
Mute Residual Noise		V Mute	-	(Note 13)	-	-	1.5	$m V_{p-p}$
Mute DC Offset Voltage	L / R Output	V_{OS}	-	(Note 14)	-	5	100	mV
	M Output		-		-	-	300	
Sub Carrier Sensitivity		SSUB	-	(Note 15)	-	-	12	dB
Cue Signal Sensitivity	No Modulation	SQo	-	(Note 16)	8	-	-	dB
	L-R 900 Hz 100\%	SQ900	-		6	-	-	
	Sub Sound 1 kHz 100\%	SQ1k	-		6	-	-	
Input Resistance		R_{IN}	-	(Note 17)	7	10	13	k Ω
Output Resistance		ROUT	-	(Note 18)	70	100	130	Ω

TEST CONDITIONS

| NOTE | INPUT
 SIGNAL | MODE SETTING | | TEST PIN | TEST METHOD |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |

NOTE	INPUT SIGNAL	MODE SETTING			TEST PIN	TEST METHOD
		PIN 3	PIN 4	PIN 7		
8	Signal F	0 [V]	0 [V]	0 [V]	Pins 8, 9	Adjust the input signal amplitude so that the output level of pin 8 is at minimum. Measure the output levels of 1 kHz spectrum of pin $8\left(\mathrm{~V}_{8}\right)$ and pin $9\left(\mathrm{~V}_{9}\right)$ by a spectrum analyzer. Sepa $[\mathrm{dB}]=20 \log \left(\mathrm{~V}_{9} / \mathrm{V}_{8}\right)$
9	Signal H	0 [V]	2.5 [V]	0 [V]	Pins 8, 9	Measure the output levels of 1 kHz spectrum of pin $8\left(\mathrm{~V}_{8}\right)$ and pin $9\left(\mathrm{~V}_{\mathrm{g}}\right)$ by a spectrum analyzer. $C T[d B]=20 \log \left(V_{9} / V_{8}\right)$
10	Signal I	0 [V]	Variable	0 [V]	Pin 4	Raise the voltage of pin 4 from 0 V . Measure the upper limit voltage (Vmax M [V]) holding the output from pin 8 at 1 kHz . Reduce the voltage of pin 4 from 2.5 V . Measure the lower limit voltage (Vmin B (1) [V]) holding the output from pin 8 at 400 Hz .Raise the voltage of pin 4 from 2.5 V . Measure the upper limit voltage (Vmax B (1) [V]) holding the output from pin 9 at 1 kHz . Reduce the voltage of pin 4 from 5 V . Measure the lower limit voltage (Vmin B (1) [V]) holding the output from pin 9 at 400Hz. Raise the voltage of pin 4 from 5 V . Measure the upper limit voltage (Vmax S [V]) holding the output from pin 9 at 400 Hz . Reduce the voltage of pin 4 from 9 V . Measure the lower limit voltage (Vmin B (2) [V]) holding the output from pin 9 at 1 kHz.
11	Signal E	Variable	0 [V]	0 [V]	Pin 3	Raise the voltage of pin 3 from 0 V . Measure the upper limit voltage (Vmax FMono [V]) holding the output from pin 8 to 0 V. Reduce the voltage of pin 3 from 5 V . Measure the lower limit voltage (Vmin FMono [V]) holding the output from pin 8 at 1 kHz.
12	Signal A	0 [V]	0 [V]	Variable	Pin 7	Raise the voltage of pin 7 from 0 V . Measure the voltage (Vmute [V]) when the output from pin 8 or pin 9 changes to 0 V.
13	Signal A	0 [V]	0 [V]	5 [V]	Pins 8, 9, 10	Measure the output levels of the pins (VMute [$\mathrm{m} \mathrm{V}_{\mathrm{p} \text {-p }}$]).
14	No signal	0 [V]	0 [V]	$0 / 5$ [V]	Pins 8, 9, 10	Switch the pin 7 voltage between 0 V and 5 V . Measure the DC voltage change of the pins (Vos [V]).

TEST CONDITIONS

NOTE	INPUT SIGNAL	MODE SETTING			TEST PIN	TEST METHOD
		PIN 3	PIN 4	PIN 7		
15	Signal J	0 [V]	0 [V]	0 [V]	Pin 17	Input signal J. Lower the 31.47 [kHz] signal level from 150 [$\mathrm{m} \mathrm{V}_{\mathrm{rms}}$]. Measure the $31.47[\mathrm{kHz}$] signal level when the pin 17 voltage changes to 9 [V] (VSUB). $\text { S SUB }=20 \log (150 / \mathrm{VSUB})[\mathrm{dB}]$
16	Signal K Signal L Signal M	0 [V]	0 [V]	0 [V]	Pins 16, 17	Input signal K. Lower the cue signal level from $20 \mathrm{mV}_{\text {rms }}$. Measure the cue signal level when the pin 17 voltage changes to 9 V (V Qo [$\mathrm{mV}_{\mathrm{rms}} \mathrm{l}$) $\mathrm{S} \text { Qo }[\mathrm{dB}]=20 \log (20 / \mathrm{VQo})$ Input signal L. Lower the cue signal level from 20 mV rms. Measure the cue signal level when the pin 17 voltage changes to 9 V (VQ900 [$\mathrm{mV}_{\mathrm{rms}}$]) $\text { S Q900 [dB] = } 20 \log (20 / \text { VQ900 }) .$ Input signal M. Lower the cue signal level from $20[\mathrm{mV} \mathrm{rms}]$. Measure the cue signal level when the pin 16 voltage changes to 9 V (VQ1k [$\mathrm{mV}_{\mathrm{rms}}$]) $\text { S Q1k [dB] = } 20 \log (20 / \text { VQ1k }) .$
17	Signal A	0 [V]	0 [V]	0 [V]	Pin 12	Measure the input resistance.
18	Signal A	0 [V]	0 [V]	0 [V]	Pins 8, 9, 10	Measure the output resistance.

INPUT SIGNAL TABLE

SIGNAL	MAIN SIGNAL	SUB SIGNAL		CUE SIGNAL	
		CARRIER	MODULATION	CARRIER	MODULATION
Signal A	$\begin{aligned} & 1 \mathrm{kHz}, \\ & 250 \mathrm{mV} \\ & \text { rms } \end{aligned}$	No signal	-	No signal	-
Signal B	No signal	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rmss}^{2} \end{aligned}$	$1 \mathrm{kHz}, 100 \%$ FM	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	922.5 Hz, 60\%AM
Signal C	$\begin{aligned} & 100 \mathrm{~Hz}, \\ & 250 \mathrm{mV} \\ & \mathrm{rms} \end{aligned}$	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rms}_{\mathrm{rms}} \end{aligned}$	$100 \mathrm{~Hz}, 100 \%$ FM	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$922.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal D	$\begin{aligned} & 10 \mathrm{kHz}, \\ & 250 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rmss}_{\mathrm{rm}} \end{aligned}$	$10 \mathrm{kHz}, 100 \%$ FM	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$922.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal E	No signal	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rmss}_{\mathrm{rm}} \end{aligned}$	No signal	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \text { rms } \end{aligned}$	922.5 Hz, 60\%AM
Signal F	$\begin{aligned} & 1 \mathrm{kHz}, \\ & 125 \mathrm{mV} \\ & \text { rms } \end{aligned}$	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 200 \mathrm{mV} \mathrm{rms}_{\mathrm{rms}} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kHz} \\ & 50 \% \mathrm{FM} \end{aligned} \text { (In-phase), }$	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$982.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal G	$\begin{aligned} & 1 \mathrm{kHz}, \\ & 250 \mathrm{mV} \\ & \mathrm{rms} \end{aligned}$	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rmss}^{2} \end{aligned}$	No signal	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$922.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal H	$\begin{aligned} & 1 \mathrm{kHz}, \\ & 250 \mathrm{mV} \\ & \mathrm{rms} \end{aligned}$	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rmss}_{\mathrm{rm}} \end{aligned}$	1 kHz , 100\% FM	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \text { rms } \end{aligned}$	922.5 Hz, 60\%AM
Signal I	$\begin{aligned} & 1 \mathrm{kHz}, \\ & 250 \mathrm{mV} \mathrm{rms} \end{aligned}$	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rms} \end{aligned}$	$400 \mathrm{~Hz}, 100 \%$ FM	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	922.5 Hz, 60\%AM
Signal J	No signal	31.47 kHz , Variable	No signal	$\begin{aligned} & 55.07 \mathrm{kHz}, \\ & 20 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$922.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal K	No signal	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rms} \end{aligned}$	No signal	$55.07 \mathrm{kHz} \text {, }$ Variable	$922.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal L	No signal	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 200 \mathrm{mV} \mathrm{rmss} \end{aligned}$	900Hz, 100\% FM	$55.07 \mathrm{kHz} \text {, }$ Variable	$982.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$
Signal M	No signal	$\begin{aligned} & 31.47 \mathrm{kHz}, \\ & 150 \mathrm{mV} \mathrm{rms} \end{aligned}$	$1 \mathrm{kHz}, 100 \%$ FM	$55.07 \mathrm{kHz} \text {, }$ Variable	$922.5 \mathrm{~Hz}, 60 \% \mathrm{AM}$

TEST CIRCUIT

LFP : 4-stage Butterworth, cutoff frequency 15 kHz

APPLICATION CIRCUIT

Ceramic oscillator: CSB503E7 (Murata)

PACKAGE DIMENSIONS

2.54

Weight: 1.00 g (Typ.)

