#### **Features**

- AMPS/Cell Band CDMA Operation
- Low-current Consumption
- Excellent Noise and IP3 Performance
- Adjustable Third Order Intercept on LNA Stage
- Flexible IF Frequency Range from 80 MHz to 230 MHz

#### **Benefits**

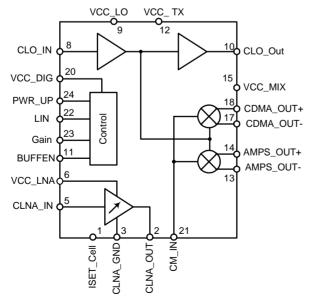
- Very Small 24 Pin 4 x 4 mm Package
- Few External Components
- Fully ESD Protected

## **Application**

• Dual-mode/Single-band CDMA IS-95/98 Based Mobile Phones

Electrostatic sensitive device.

Observe precautions for handling.




## **Description**

The T0351 is a front-end receiver RFIC designed for single-band, dual-mode operation. The device supports AMPS and Cell band CDMA operation. The IF range is from 80 MHz to 230 MHz with external tuning. The low-noise amplifier has an adjustable third order intercept point (IP3) to minimize inter-modulation and cross-modulation effects. The mixers are designed for differential IF outputs (single-ended or differential IF outputs for AMPS mode), and they feature excellent linearity and low-noise figure.

This device is available in a  $4 \times 4$  mm MLF package with 24 pins. The T0351 front-end receiver is capable of meeting all electrical requirements in accordance with the TIA/EIA 98-C wireless communication standard.

Figure 1. Block Diagram

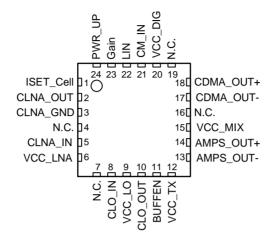




## 2.8 V Dual-mode RF Receiver for CDMA/AMPS

T0351

# Preliminary (Summary)


Rev. 4558AS-CDMA-11/02





## **Pin Configuration**

Figure 2. Pinning



## **Pin Description**

| Pin | Symbol                                                                                                                                                                              | Function                                                                                                                                            |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | ISET_Cell                                                                                                                                                                           | Bias resistor for Cell LNA. For typical bias use a 390 $\Omega$ resistor to ground which sets the bias current for HGHL mode.                       |  |  |
| 2   | CLNA_Out                                                                                                                                                                            | Cell LNA output. Requires a DC blocking capacitor and an L-C (shunt C/series L) matching network for optimum gain, intercept and noise performance. |  |  |
| 3   | CLNA_GND Cell LNA emitter-ground. The LNA emitter ground should be grounded immediately to the ground plane to reduce stray inductance and capacitance that may affect performance. |                                                                                                                                                     |  |  |
| 4   | N.C.                                                                                                                                                                                | Not connected.                                                                                                                                      |  |  |
| 5   | CLNA_IN                                                                                                                                                                             | Cell LNA input. Requires a DC blocking capacitor and an L-C (shunt C/series L) matching network for optimum gain, intercept and noise performance.  |  |  |
| 6   | VCC_LNA                                                                                                                                                                             | Power supply pin for Cell LNA. Bypass with a capacitor as close to the pin as possible.                                                             |  |  |
| 7   | N.C.                                                                                                                                                                                | Not connected.                                                                                                                                      |  |  |
| 8   | CLO_IN                                                                                                                                                                              | Cell band LO input.                                                                                                                                 |  |  |
| 9   | VCC_LO                                                                                                                                                                              | Supply voltage for LO input buffer.                                                                                                                 |  |  |
| 10  | CLO_OUT                                                                                                                                                                             | Cellular LO buffer output. Internally matched to 100 $\Omega$ . Does not require a blocking capacitor.                                              |  |  |
| 11  | BUFFEN                                                                                                                                                                              | LO output buffer enable. Set BUFFEN pin HIGH to power up the LO buffer output.                                                                      |  |  |
| 12  | VCC_TX                                                                                                                                                                              | Supply voltage for LO output buffer.                                                                                                                |  |  |
| 13  | AMPS_OUT-                                                                                                                                                                           | Negative AMPS IF output.                                                                                                                            |  |  |
| 14  | AMPS_OUT+                                                                                                                                                                           | Positive AMPS IF output.                                                                                                                            |  |  |
| 15  | VCC_MIX                                                                                                                                                                             | Supply voltage for both mixers.                                                                                                                     |  |  |
| 16  | N.C.                                                                                                                                                                                | Not connected.                                                                                                                                      |  |  |
| 17  | CDMA_OUT-                                                                                                                                                                           | Negative CDMA IF output.                                                                                                                            |  |  |
| 18  | CDMA_OUT+                                                                                                                                                                           | Positive CDMA output.                                                                                                                               |  |  |
| 19  | N.C.                                                                                                                                                                                | Not connected.                                                                                                                                      |  |  |
| 20  | VCC_DIG                                                                                                                                                                             | Supply voltage for logic control circuits.                                                                                                          |  |  |
| 21  | CM_IN                                                                                                                                                                               | Cell RF input to Cell CDMA mixer and Cell AMPS mixer.                                                                                               |  |  |
| 22  | LIN                                                                                                                                                                                 | Logic input for high or low linearity. Logic HIGH selects High linearity.                                                                           |  |  |
| 23  | Gain                                                                                                                                                                                | Gain select logic input. Logic high selects High Gain.                                                                                              |  |  |
| 24  | PWR_UP                                                                                                                                                                              | Power-up input. Logic low selects shutdown mode.                                                                                                    |  |  |
| -   | Paddle                                                                                                                                                                              | Device ground and heat sink, requires good thermal path; RF reference plane.                                                                        |  |  |

Table 1. Mode Programming Truth Table

| Mode      | Condition                      | Gain | LIN  | BUFFEN (1) | PWR_UP |
|-----------|--------------------------------|------|------|------------|--------|
| Shut down | All circuits off               | Low  | Low  | X          | Low    |
| Cell mode | High gain, high linearity      | High | High | X          | High   |
|           | High gain, low linearity       | High | Low  | X          | High   |
|           | Low gain                       | Low  | High | X          | High   |
|           | AMPS mode                      | Low  | Low  | X          | High   |
|           | Activate Cell LO output buffer | X    | Х    | High       | High   |

Note: 1. The symbol X ("do not care") means a logic input does not affect an operating mode.

## **Absolute Maximum Ratings**

| Parameters                     | Symbol                                      | Value                          | Unit |
|--------------------------------|---------------------------------------------|--------------------------------|------|
| Supply voltages, no RF applied | V <sub>cc</sub>                             | -0.5 to +4.0                   | V    |
| Logic control voltages         | V <sub>CTRL</sub>                           | -0.5 to + V <sub>CC</sub> +0.5 | V    |
| Supply current                 | I <sub>cc</sub>                             | 50.0                           | mA   |
| RF and LO input signals        | P <sub>LO</sub> ; C <sub>LO</sub> ; CLNA_IN | +5.0                           | dBm  |
| I <sub>SET_CELL</sub>          | LNA IP3 adjustment                          | 1                              | mA   |
| Operating case temperature     | T <sub>c</sub>                              | -40 to +110                    | °C   |
| Storage temperature            | T <sub>STG</sub>                            | -55 to +150                    | °C   |

## **Thermal Resistance**

| Parameters       | Symbol            | Value | Unit |
|------------------|-------------------|-------|------|
| Junction ambient | R <sub>thJA</sub> | TBD   | K/W  |





## **DC Supply Characteristics**

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions (no RF applied):  $V_{CC} = +2.75 \text{ V}$ ,  $T_{amb} = 25^{\circ}\text{C}$ .

| No. | Parameters                  | Test Conditions | Pin                 | Symbol             | Min. | Тур. | Max. | Unit | Type* |
|-----|-----------------------------|-----------------|---------------------|--------------------|------|------|------|------|-------|
|     | All Modes                   |                 |                     |                    |      |      |      |      |       |
|     | Supply voltage              |                 | 6, 9, 12,<br>15, 20 | V <sub>CC</sub>    | 2.7  | 2.8  | 3.3  | V    |       |
|     | Control voltage High        |                 | 11, 22, 23,<br>24   | V <sub>CTRL</sub>  | 1.7  |      |      | V    |       |
|     | Control voltage Low         |                 | 11, 22, 23,<br>24   | V <sub>CTRL</sub>  |      |      | 0.5  | V    |       |
|     | LO Rx buffer supply current |                 | 8                   | I <sub>CCMIX</sub> |      | 6.0  | 7.0  | mA   |       |
|     | LO Tx buffer current        |                 | 10                  | I <sub>CCMIX</sub> |      | 5.0  |      | mA   |       |
|     | Logic-High current          |                 | 11, 22, 23,<br>24   | I <sub>CTRL</sub>  |      |      | 100  | μA   |       |
|     | Logic-Low current           |                 | 11, 22, 23,<br>24   | I <sub>CTRL</sub>  | -5.0 |      |      | μA   |       |
|     | Power-down supply current   | Gain, LIN = LOW | 6, 9, 12,<br>15, 20 | I <sub>cc</sub>    |      |      | 10   | μA   |       |

<sup>\*)</sup> Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

#### **AC Electrical Characteristics**

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:  $V_{CC} = +2.75 \text{ V}$ ,  $T_{amb} = 25^{\circ}\text{C}$ , all RF inputs and outputs with a return loss of 10 dB minimum.

| No. | Parameters                      | Test Conditions | Pin               | Symbol             | Min.        | Тур.  | Max.        | Unit | Type* |
|-----|---------------------------------|-----------------|-------------------|--------------------|-------------|-------|-------------|------|-------|
|     | General Performance             |                 |                   |                    |             |       |             |      |       |
|     | Operating frequency range       |                 | 5                 | f                  | 869         | 881.5 | 894         | MHz  |       |
|     | LO frequency range              | IF = 184 MHz    | 8                 | f <sub>LO</sub>    | 685<br>1053 |       | 710<br>1078 | MHz  |       |
|     | IF frequency range              |                 | 13, 14, 17,<br>18 | f <sub>IF</sub>    | 80          | 85    | 230         | MHz  |       |
|     | LO input power level            |                 | 8                 | P <sub>LO</sub>    | -10         | -5    | 0           | dBm  |       |
|     | LO Tx buffer output power level |                 | 10                | P <sub>LOOUT</sub> | -8          | -3    |             | dBm  |       |

 $<sup>^{*}</sup>$ ) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

## **Cascade RF Electrical Characteristics**

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:  $V_{CC} = +2.75 \text{ V}$ ,  $T_{amb} = 25 ^{\circ}\text{C}$ ; RF = 881.5 MHz; LO = 966.5 MHz; IF = 85 MHz; LO input = -5.0 dBm; RF input = -35 dBm (high gain mode)

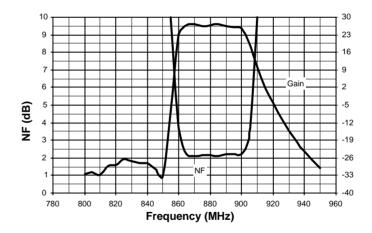
| No. | Parameters                                          | Test Conditions                     | Pin      | Symbol          | Min. | Тур. | Max. | Unit | Type* |
|-----|-----------------------------------------------------|-------------------------------------|----------|-----------------|------|------|------|------|-------|
|     | Combined LNA an                                     | d Mixer Performance, CDI            | MA Modul | ation           |      |      |      |      |       |
|     | High-Gain High-Li                                   | nearity Mode (HGHL)                 |          |                 |      |      |      |      |       |
|     | Gain                                                |                                     |          | G               |      | 26   |      | dB   |       |
|     | Noise figure                                        | Band_SEL = High; Gain = High; LIN = |          | NF              |      | 2.5  |      | dB   |       |
|     | Input IP3                                           | High                                |          | IP3             |      | -4   |      | dBm  |       |
|     | Supply current                                      | Ĭ                                   |          | I <sub>cc</sub> |      | 29   |      | mA   |       |
|     | High-Gain Low-Linearity Mode (HGLL Paging Mode)     |                                     |          |                 |      |      |      |      |       |
|     | Gain                                                |                                     |          | G               |      | 25   |      | dB   |       |
|     | Noise figure                                        | Band_SEL = High; Gain = High; LIN = |          | NF              |      | 2.7  |      | dB   |       |
|     | Input IP3                                           | Low                                 |          | IP3             |      | -5.5 |      | dBm  |       |
|     | Supply current                                      |                                     |          | I <sub>cc</sub> |      | 21   |      | mA   |       |
|     | Low-Gain Mode (L                                    | in Mode (LG)                        |          |                 |      |      |      |      |       |
|     | Gain                                                |                                     |          | G               |      | 9.5  |      | dB   |       |
|     | Noise figure                                        | Band_SEL = High; Gain = Low; LIN =  |          | NF              |      | 14   |      | dB   |       |
|     | Input IP3                                           | Low                                 |          | IP3             |      | 12   |      | dBm  |       |
|     | Supply current                                      |                                     |          | I <sub>cc</sub> |      | 26   |      | mA   |       |
|     | Combined LNA and Mixer Performance, AMPS Modulation |                                     |          |                 |      |      |      |      |       |
|     | Gain                                                |                                     |          | G               |      | 22   |      | dB   |       |
|     | Noise figure                                        | Band_SEL = High; Gain = Low; LIN =  |          | NF              |      | 3.9  |      | dB   |       |
|     | Input IP3                                           | Low                                 |          | IP3             |      | -6   |      | dBm  |       |
|     | Supply current                                      |                                     |          | I <sub>cc</sub> |      | 19   |      | mA   |       |

<sup>\*)</sup> Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter





## Typical Electrical Characteristics LNA and Mixer Separately


Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:  $V_{CC}$  = +2.75 V,  $T_{amb}$  = 25°C, RF = 881.5 MHz; LO = 966.5 MHz; IF = 85 MHz; LO input = -5.0 dBm; RF input = -35 dBm (high gain mode)

| No. | Parameters                 | Test Conditions                                                 | Gain (dB)     | NF (dB) | IIP3 (dBm) | Type* |  |  |  |
|-----|----------------------------|-----------------------------------------------------------------|---------------|---------|------------|-------|--|--|--|
|     | Cell Band, High-Gain       | High-Linearity Mode (HGHL); CDM                                 | MA Modulation |         |            |       |  |  |  |
|     | Cell LNA                   | Coin High LIN High                                              | 15            | 1.7     | 12         |       |  |  |  |
|     | Cell mixer                 | Gain = High; LIN = High                                         | 13            | 8.0     | 8          |       |  |  |  |
|     | Cell Band, High-Gain       | Cell Band, High-Gain Low-Linearity Mode (HGLL); CDMA Modulation |               |         |            |       |  |  |  |
|     | Cell LNA                   | Coin High LIN Low                                               | 14.5          | 1.7     | 7          |       |  |  |  |
|     | Cell mixer                 | Gain = High; LIN = Low                                          | 13            | 7.5     | 6.5        |       |  |  |  |
|     | Cell Band, Low-Gain I      | Mode (LG); CDMA Modulation                                      |               |         |            |       |  |  |  |
|     | Cell LNA                   | Coin Low LIN Low                                                | -2.5          | 7       | 20         |       |  |  |  |
|     | Cell mixer                 | Gain = Low; LIN = Low                                           | 13            | 8.0     | 8          |       |  |  |  |
|     | Cell Band, AMPS Modulation |                                                                 |               |         |            |       |  |  |  |
|     | Cell LNA                   | Coin Low LIN Low                                                | 14.5          | 1.7     | 7          |       |  |  |  |
|     | Cell mixer                 | Gain = Low; LIN = Low                                           | 9.5           | 12.6    | 6          |       |  |  |  |

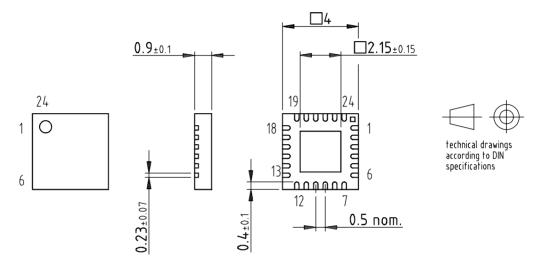
Note: \*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

## **Typical Performance**

Figure 3. Cellular Band, Cascade Performance (Gain + Noise Figure)



## **Ordering Information**


| Extended Type Number | Package      | Remarks |
|----------------------|--------------|---------|
| T0351                | HP-VFQFP-N24 | TBD     |

## **Package Information**

Package: HP-VFQFP-N24

(acc. JEDEC OUTLINE No. MO-220)

Dimensions in mm



Drawing-No.: 6.543-5086.01-4

Issue: 1; 26.02.02

Notes: GND solder mask opening is not centered on the package.





#### **Atmel Headquarters**

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

#### Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

#### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

#### Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

#### **Atmel Operations**

#### Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

#### Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

#### ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

#### RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

*e-mail* literature@atmel.com


Web Site http://www.atmel.com

#### © Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel® is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

