RC4558, RC4558Y, RM4558, RV4558 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

SLOS073 - MARCH 1976 - REVISED AUGUST 1991

- Continuous-Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Unity Gain Bandwidth . . . 3 MHz Typ
- Gain and Phase Match Between Amplifiers
- Low Noise . . . 8 nV√Hz Typ at 1 kHz
- Designed To Be Interchangeable With Raytheon RC4558, RM4558, and RV4558

description

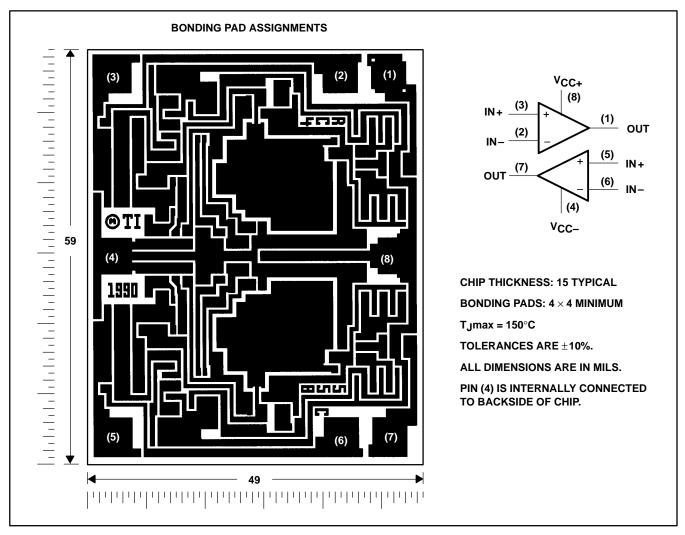
The RC4558, RM4558, and RV4558 are dual high-performance operational amplifiers with each half electrically similar to the μA741 except that offset null capability is not provided.

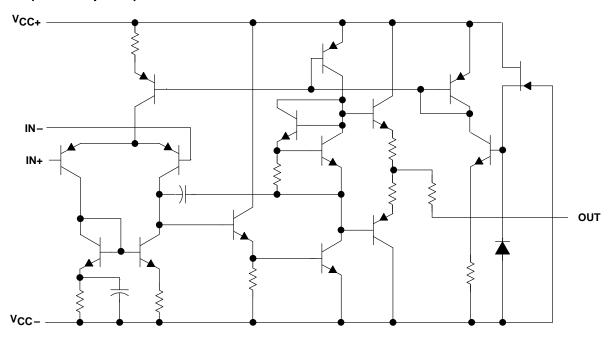
The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The RC4558 is characterized for operation from 0° C to 70° C, the RM4558 is characterized for operation over the full military temperature range of -55° C to 125° C, and the RV4558 is characterized for operation from -40° C to 85° C.

AVAILABLE OPTIONS

TA	V _{IO} max	PACKAGED DEVICES							
	AT 25°C	SMALL OUTLINE (D)	SSOP (DBLE)	CERAMIC DIP (JG)	PLASTIC DIP (P)	SSOP (PWLE)	CHIP FORM (Y)		
0°C to 70°C	6 mV	RC4558D	RC4558DBLE	_	RC4558P	RC4558PWLE	RC4558Y		
−40°C to 85°C	6 mV	RV4558D	_		RV4558P	_			
−55°C to 125°C	6 mV	_	_	RM4558JG	_	_	_		


The D package is available taped and reeled. Add the suffix R to the device type (e.g., RC4558DR). The DB and PW packages are available only left-end taped and reeled. RC4558Y is tested at 25°C.


SLOS073 - MARCH 1976 - REVISED AUGUST 1991

RC4558Y chip information

These chips, properly assembled, display characteristics similar to the RC4558. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	RC4558	RM4558	RV4558	UNIT	
Supply voltage V _{CC+} (see Note 1)	18	22	18	V	
Supply voltage V _{CC} (see Note 1)	-18	-22	-18	V	
Differential input voltage (see Note 2)	±30	±30	±30	V	
Input voltage (any input, see Notes 1 and 3)	±15	±15	±15	V	
Duration of output short circuit to ground, one amplifier at a time (see Note 4)	unlimited	unlimited	unlimited		
Continuous total dissipation	See Dissipation Rating Table				
Operating free-air temperature range	0 to 70	-55 to 125	-40 to 85	°C	
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package		300		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DB, P, or PW package	260		260	°C	

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	680 mW	5.8 mW/°C	33°C	464 mW	377 mW	N/A
DB or PW	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A

RC4558, RC4558Y, RM4558, RV4558 **DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS**

SLOS073 - MARCH 1976 - REVISED AUGUST 1991

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC+}	5	15	V
Supply voltage, V _{CC} _	-5	-15	V

electrical characteristics at specified free-air temperature, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$

DADAMETO		TEST CONDITIONS†		F	RC4558		RM4558			RV4558			UNIT
	PARAMETR	I EST CONL	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage	V _O = 0	25°C		0.5	6		0.5	5		0.5	6	mV
VΙΟ	input onset voltage	vO = 0	Full range			7.5			6			7.5	IIIV
l	Input offset current	V _O = 0	25°C		5	200		5	200		5	200	nA
I _{IO}	input onset current	vO = 0	Full range			300			500			500	IIA
1	Input bias current	V _O = 0	25°C		150	500		140	500		140	500	nA
I _{IB}	input bias current	v _O = 0	Full range			800			1500			1500	
V _{ICR}	Common-mode input voltage range		25°C	±12	±14		±12	±14		±12	±14		٧
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±14		±12	±14		±12	±14		
V _{OM}	Maximum output voltage swing	$R_L = 2 k\Omega$	25°C	±10	±13		±10	±13		±10	±13		V
	voltago ovillig	$R_L \ge 2 \ k\Omega$	Full range	±10			±10			±10			7
Δ.	Large-signal differential	$R_L \ge 2 k\Omega$,	25°C	20	300		50	350		20	300		\//ma\/
A _{VD}	voltage amplification	$V_0 = \pm 10 \text{ V}$	Full range	15			25			15			V/mV
B ₁	Unity-gain bandwith		25°C		3		2	3.5			3		MHz
rį	Input resistance		25°C	0.3	5		0.3	5		0.3	5		MΩ
CMRR	Common-mode rejection ratio		25°C	70	90		70	90		70	90		dB
k _{SVS}	Supply voltage sensitivity (ΔV _{IO} /ΔV _{CC})	V _{CC} = ±15 V to ±9 V	25°C		30	150		30	150		30	150	μV/V
V _n	Equivalent input noise voltage (closed loop)	$A_{VD} = 100,$ $R_{S} = 100 \ \Omega,$ $f = 1 \ kHz,$ $BW = 1 \ Hz$	25°C		8			8			8		nV√ Hz
			25°C		2.5	5.6		2.5	5.6		2.5	5.6	
I _{CC}	Supply current (both amplifiers)	$V_O = 0$, No load	MIN T _A		3	6.6		3	6.6		3	6.6	mA
	ap	1.0.000	MAX T _A		2.3	5		2	5		2.3	5	
	-	., .	25°C		75	170		75	170		75	170	
P_D	Total power dissipation (both amplifiers)	V _O = 0, No load	MIN T _A		90	200		90	200		90	200	mW
	(= = 		MAX T _A		70	150		60	150		70	150	
V _{O1} /V _{O2}	Crosstalk Open loop	$R_S = 1 k\Omega$,	25°C		85			85			85		dB
VO1/ VO2	attenuation $A_{VD} = 100$	f = 10 kHz	23 0		105			105			105		GD.

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range is 0°C $to 70^{\circ}C for RC4558, -55^{\circ}C to 125^{\circ}C for RM4558, and -40^{\circ}C to 85^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RM4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RC4558, -55^{\circ}C for RV4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RV4558, -55^{\circ}C for RV4558, and -40^{\circ}C for RV4558. \\Minimum T_{A} is 0^{\circ}C for RV4558, -55^{\circ}C for RV4558, and -40^{\circ}C for RV4558, -55^{\circ}C fo$ for RV4558. Maximum T_A is 70°C for RC4558, 125°C for RM4558, and 85°C for RV4558.

operating characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER		MIN	TYP	MAX	UNIT		
t _r	Rise time	V _I = 20 mV,	P 2 kO	C _I = 100 pF		0.13		ns
	Overshoot	ν = 20 mν,	$R_L = 2 k\Omega$,	CL = 100 pF		5%		
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	C _L = 100 pF	1.1	1.7		V/µs

RC4558, RC4558Y, RM4558, RV4558 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

SLOS073 - MARCH 1976 - REVISED AUGUST 1991

electrical characteristics, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER				TEST CONDITIONS [†]			RC4558Y		
	PARAMETER		"	231 CONDITION	31	MIN	TYP	MAX 6 200 500 150 150 5.6	UNIT
V _{IO}	Input offset voltage		V _O = 0				0.5	6	mV
I _{IO}	Input offset current	VO = 0				5	200	nA	
I _{IB}	Input bias current		VO = 0				150	500	nA
VICR	Common-mode input voltage rang	е				±12	±14		V
V Madama adada la F		$R_L = 10 \text{ k}\Omega$			±12	±14		V	
VOM	Maximum output voltage swing		$R_L = 2 k\Omega$			±12	±13		
AVD	Large-signal differential voltage ar	$R_L = 2 k\Omega$,	V _O = ±10 V		20	300		V/mV	
B ₁	Unity-gain bandwidth						3		MHz
rį	Input resistance					0.3	5		МΩ
CMRR	Common-mode rejection ratio					70	90		dB
kSVS	Supply voltage sensitivity (ΔV _{IO} /Δ	V _{CC})	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V}$				30	150	μV/V
V _n	Equivalent input noise voltage (clo	sed-loop)	A _{VD} = 100, BW = 1 Hz	$R_S = 100 \Omega$,	f = 1 kHz,		8		nV√ Hz
ICC	Supply current (both amplifiers)		$V_{O} = 0$,	No load			2.5	5.6	mA
PD	Total power dissipation (both amp	V _O = 0,	No load			75	170	mW	
\/a./\/a	Open		D= 4 kC	f 10 kl l=			85		чD
VO1/VO2	Crosstalk attentuation	A _{VD} = 100	$R_S = 1 k\Omega$,	f = 10 kHz			105		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

	PARAMETER		MIN	TYP	MAX	UNIT		
t _r	Rise time		C: - 100 pE		0.13		ns	
	Overshoot	ν ₁ = 20 πν,	$V_{\parallel} = 20 \text{ mV}, \qquad \qquad R_{\perp} = 2 \text{ k}\Omega, \qquad \qquad C_{\perp} = 100 \text{ pF}$			5%		
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	C _L = 100 pF	1.1	1.7		V/μs

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated