Signetics

PNA7518 8-Bit Multiplying DAC

Product Specification

DESCRIPTION

The PNA7518 is an NMOS 8-bit multiplying digital-to-analog converter (DAC) designed for video applications. The device converts a digital input signal into a voltage-equivalent analog output at a sampling rate of 30 MHz .

The input signal is latched, then fed to a decoder which switches a transfer gate array (1 out of 256) to select the appropriate analog signal from a resistor chain. Two external reference voltages supply the resistor chain.
The input latches are positive edgetriggered. The output impedance is approximately $0.5 \mathrm{k} \Omega$, depending upon the applied digital code. An additional operational amplifier is required for the full bandwidth. Two's complement is selected when STC (Pin 11) is HIGH or is not connected.

FEATURES

- TTL Input levels

- Positive edge-triggered

- Analog voltage output at 30 MHz sampling rate
- Binary or two's complement input
- Output voltage accuracy to within $\pm 1 / 2$ of the input LSB

APPLICATIONS

- Video data conversion
- CRT displays
- Waveform/test signal generation - Color/black-and-white graphics

PIN CONFIGURATION

N Package		
	$v_{\text {AO }} \square$	$16 V_{D D}$
	$\mathrm{V}_{\text {REFL }} 2$	(15) BIT 4
	Bit 3	14] BIT 5
	Bit 2×4	[13] BIT 6
	BIT 15	12 BIT 7
	BITO 6	11) STC
	$v_{B B} 7$	10. 'Clk
	$v_{\text {Ss }} 8$	9] $\mathrm{V}_{\text {REFW }}$
TOP VIEW		
PIN NO.	SYMBOL	DESCRIPTION
1	V_{AO}	Analog output voltage
3	$\mathrm{V}_{\text {terl }}$	Reference voltage LOW
3 4	bit bit b	
5	bit 1	Digital voltage inputs (N_{1})
6	bit 0)	Least-significant bit (LSB)
7	$\mathrm{V}_{\text {日 }}$	Back bias
	$V_{\text {ss }}$	Ground
9	$V_{\text {reth }}$	Reference voltage HIGH Clock input
10	${ }^{\text {fcik }}$	
11	STC	Select two's complement
12	bit 7	Most-signiticant bit (MSB)
13 14	bit bit 5	Digital voltage inputs (V_{1})
14 15	bit 5	
16	V_{DO}	Positive supply voltage

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{DD}	Supply voltage range (Pin 16)	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range (Pins 3, 4,5,6, $11,12,13,14$ and 15)	-0.5 to +7	V
$\mathrm{~V}_{\text {AO }}$	Output voltage range (Pin 1)	-0.5 to +7	V
$\mathrm{P}_{\mathrm{TOT}}$	Total power dissipation	400	mW
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

8-Bit Multiplying DAC

BLOCK DIAGRAM

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

Figure 1. Switching Characteristics

DC ELECTRICAL CHARACTERISTICS $V_{D D}=4.5$ to $5.5 ; V_{S S}=0 V_{B B} C_{B C}=100 \mathrm{nF} ; T_{A}=0$ to $+70^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	LImits			UNIT
		Min	Typ	Max	
Supply (Pin 16)					
$V_{D D}$	Supply voltage	4.5	5	5.5	V
IDD	Supply current		50	80	mA
Reference voltages					
$V_{\text {REFL }}$	Reference voltage LOW (Pin 2)	-0.1		+2.1	V
$V_{\text {REFH }}$	Reference voltage HIGH (Pin 9)	-0.1		+2.1	\checkmark
$\mathrm{R}_{\text {REF }}$	Reference ladder	150	230	300	Ω
Inputs					
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{LI}} \\ & \hline \end{aligned}$	Digital input levels (TTL) ${ }^{1}$ input voltage LOW input voltage HIGH input leakage current	$\begin{gathered} 0 \\ 2.0 \end{gathered}$		$\begin{gathered} 0.8 \\ 5.25 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} V \\ V \\ \mu A \end{gathered}$
$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{I H} \\ & I_{L I} \end{aligned}$	Clock input (Pin 10) input voltage LOW input voltage HIGH input leakage current	$\begin{gathered} 0 \\ 2.0 \end{gathered}$		$\begin{gathered} 0.8 \\ 5.25 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} V \\ V \\ \mu \mathrm{~A} \end{gathered}$
Output					
$V_{A O}$	Analog voltage output (Pin 1) at $R_{L}=200 \mathrm{k} \Omega$)	0		2	V
BW	Bandwidth (-3 dB) at $\mathrm{C}_{L}=6 \mathrm{pF}$		12		MHz
Output transients (glitches) ${ }^{2}$					
V_{G}	Glitch occurring at step 7F-80 (HEX): maximum amplitude for 1 LSB change area		$\begin{gathered} 3 \\ 23 \end{gathered}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \mathrm{ns} \end{aligned}$
V_{G}	Glitch occurring at step 00-AA (HEX): maximum amplitude for 1 LSB change area		$\begin{gathered} 5 \\ 41 \end{gathered}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB ns } \end{aligned}$
Ptot	Total power dissipation		300		mW

AC ELECTRICAL CHARACTERISTICS $V_{D D}=4.5$ to $5.5 ; V_{S S}=0 V ; C_{B B}=100 \mathrm{nF} ; T_{A}=0$ to $+70^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
flck tpwh $t_{\text {pWL }}$ t_{R} t_{F}	Clock input (Pin 10) frequency pulse width HIGH pulse width LOW input rise time at $\mathrm{f}_{\mathrm{CLK}}=30 \mathrm{MHz}$ input fall time at $f_{\text {CLK }}=30 \mathrm{MHz}$	$\begin{gathered} 1 \\ 10 \\ 10 \end{gathered}$		30 3 3	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \hline \end{gathered}$
Switching characteristics (Figure 1)					
$\begin{aligned} & \mathrm{t}_{\mathrm{SU}} \\ & \mathrm{t}_{\mathrm{DAT}} \end{aligned}$	Data setup time	3			ns
$\begin{aligned} & t_{\text {thD }} \\ & t_{\text {DAT }} \end{aligned}$	Data hold time	4			ns
tPD	Propagation delay time, input to output	$\mathrm{t}_{\text {CLK }}+15$	$\mathrm{t}_{\text {CLK }}+22$	$\mathrm{t}_{\text {CLK }}+30$	ns
${ }_{\text {ts }} 1$	Settling time; 10 to 90% full-scale change; $C_{L}=6 p F_{;} \quad R_{L}=200 \mathrm{k} \Omega$		13	20	ns
$\mathrm{t}_{\text {S }}$	Settling time to $\pm 1 \mathrm{LSB}$; $C_{L}=6 p F ; R_{L}=200 \mathrm{k} \Omega$		40		ns
	Linearity at $\mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{P-\mathrm{P}}$			$\pm 1 / 2$	LSB
Influence of clock frequency ${ }^{2}$					
	Cross-talk at $2 \times \mathrm{f}_{\text {CLK }}$ amplitude area		$\begin{aligned} & 2 \\ & 8 \end{aligned}$		$\begin{aligned} & \text { LSB } \\ & \text { LSB ns } \end{aligned}$

NOTES:

1. Inputs Bit 0 to Bit 7 are positive edge-triggered and STC.
2. Measured at $\mathrm{V}_{\text {REFH }}-\mathrm{V}_{\text {REFL }}=2.0 \mathrm{~V} ; 1 \times \mathrm{LSB}=7.8 \mathrm{mV}$. The energy equivalent of output transients is given as the area contained by the graph of output amplitude (LSB) against time (ns). The glitch area is independent of the value of $\mathrm{V}_{\text {fEF }}$. Glitch amplitudes and clock cross-talk can be reduced by using a shielded printed circuit board (see Pin Configuration).
