GENERAL DESCRIPTION

The PCF2100 is a single chip, silicon gate CMOS circuit designed to drive an LCD (Liquid Crystal Display) with up to 40 segments in a duplex manner; specially for low voltage applications. A threeline bus structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

Features

- 40 LCD-segment drive capability
- Supply voltage 2.25 to 6.5 V
- Low current consumption
- Serial data input
- CBUS control
- One-point built-in oscillator
- Expansion possibility

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage with respect to V_{SS}
Voltage on any pin
Operating ambient temperature range
Storage temperature range
$V_{D D}$
V_{n}
Tamb
$\mathrm{T}_{\mathrm{stg}}$
-0.3 to 8 V
$V_{S S}-0.3$ to $V_{D D}+0.3 \mathrm{~V}$ -40 to $+85^{\circ} \mathrm{C}$
-55 to $+125^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

CHARACTERISTICS
$\mathrm{V}_{\mathrm{DD}}=2,25$ to $6.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{O}}=1 \mathrm{M} \Omega ; \mathrm{C}_{\mathrm{O}}=680 \mathrm{pF} ;$ unless otherwise specified

parameter	condition	symbol	min.	typ.	max.	unit
Supply current	no external load	${ }^{\prime}$ DD	-	10	50	$\mu \mathrm{A}$
Supply current	no external load; $T_{a m b}=-25 \text { to }+85^{\circ} \mathrm{C}$	IDD	-	-	30	$\mu \mathrm{A}$
Display frequency	see Fig. 8; $\mathrm{T}=680 \mu$ s	$\mathrm{f}_{\text {LCD }}$	60	80	100	Hz
D.C. component of LCD drive	with respect to V_{SX}	$V_{B P}$	-	± 10	-	mV
Load on each segment driver			-	-	10 500	$\mathrm{M} \Omega$ pF
Load on each backplane driver			-	-	5	
Input voltage HIGH		$V_{\text {IH }}$	2	-	-	\checkmark
Input voltage LOW	$\}$ see Fig. 9	$V_{\text {IL }}$	-	-	0,6	V
Rise time $V_{B P}$ to $V_{S X}$	max. load	t_{r}	-	20	-	$\mu \mathrm{s}$
Inputs CLB, DATA, DLEN	see note on next page					
Rise and fall times	see Fig. 2	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	10	$\mu \mathrm{S}$
CLB pulse width HIGH	see Fig. 2	tWH	1	-	-	$\mu \mathrm{s}$
CLB pulse width LOW	see Fig. 2	${ }^{\text {t W L }}$	9	-	-	$\mu \mathrm{s}$

CHARACTERISTICS (continued)

parameter	condition	symbol	min.	typ.	max.	unit
$\begin{aligned} & \text { Data set-up time } \\ & \text { DATA } \longrightarrow \text { CLB } \end{aligned}$	see Fig. 2	${ }^{\text {t }}$ SUDA	8	-	-	$\mu \mathrm{s}$
Data hold time $\text { DATA } \longrightarrow \text { CLB }$	see Fig. 2	${ }^{\text {t HDDA }}$	8	-	-	$\mu \mathrm{s}$
Enable set-up time DLEN \rightarrow CLB	see Fig. 2	tsuen	1	-	-	$\mu \mathrm{S}$
Disable set-up time CLB \rightarrow DLEN	see Fig. 2	${ }^{\text {t }}$ SUDI	8	-	-	$\mu \mathrm{S}$
Set-up time (load pulse) DLEN \rightarrow CLB	see Fig. 2	${ }^{\text {t }}$ SULD	8	-	-	$\mu \mathrm{S}$
Busy-time from load pulse to next start of transmission	see Fig. 2	${ }^{\text {t BUSY }}$	8	-	-	$\mu \mathrm{s}$
Set-up time (leading zero) DATA \rightarrow CLB	see Fig. 2	tSULZ	8	-	-	$\mu \mathrm{s}$

Note

All timing values are referred to $\mathrm{V}_{I H} \min$ and $\mathrm{V}_{I L}$ max (see Fig. 2). If external resistors are used in the bus lines (see Fig. 9), the extra time constant has to be added.

Fig. 2 CBUS timing.

Fig. 3 CBUS data format.

Notes to Fig. 3
An LCD segment is activated when the corresponding DATA-bit is HIGH.
When DATA-bit 21 is HIGH, the A-latches (BP1) are loaded. With DATA-bit 21 LOW, the B-latches (BP2) are loaded.
CLB-pulse 23 transfers data from shift register to selected latches.
The following tests are carried out by the bus control logic:
a. Test on leading zero.
b. Test on number of DATA-bits.
c. Test of disturbed DLEN and DATA signals during transmission.

If one of the test conditions is not fulfilled, no action follows the load conditions (load pulse width DLEN is LOW) and the driver is ready to receive new data.

Fig. 4 Output resistance of backplane and segments.

$$
\begin{aligned}
& -\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} ;---\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \\
& -\cdot-\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C} .
\end{aligned}
$$

Fig. 6 Display frequency as a function of $\mathrm{R}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{o}}$ time; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 5 Display frequency as a function of supply voltage; $\mathrm{R}_{0} \mathrm{C}_{\mathrm{O}}=680 \mu \mathrm{~s}$.
$-\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$;
$\ldots-. \mathrm{T}_{\mathrm{amb}}=+8 \mathrm{o}^{\circ} \mathrm{C}$.
$\cdots \cdot \mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.

Fig. 7 Supply current as a function of supply voltage.
$-\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} ;---\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$;
$-\cdot-\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.

Fig. 8 Timing diagram.

Fig. 9 Input circuitry.
Note to Fig. 9
$V_{S S}$ line is common. In systems where it is expected that $V_{D D 2}>V_{D D 1}+0.5 \mathrm{~V}$, a resistor should be inserted to reduce the current flowing through the input protection.
Maximum input current $\leqslant 40 \mu \mathrm{~A}$.

(1) In the slave mode, the serial resistors between BP1 and BP2 of the PCF2100 and the backplane of the LCD must be $>2.7 \mathrm{k} \Omega$. In most applications the resistance of the interconnection to the LCD already has a higher value.

Fig. 10 Diagram showing expansion possibility.

Note to Fig. 10

By connecting OSC to VSS the BP-pins become inputs and generate signals synchronized to the single oscillator frequency, thus allowing expansion of several PCF2111, PCF2110 and PCF2100 ICs up to the BP drive capability of the master.
PCF2111 is a 64 LCD-segment driver.
PCF2110 is a 60 LCD-segment driver plus 2 LED driver outputs.

CLB 1	\bigcirc	28	DLEN
$V_{D D} \quad 2$		27	DATA
osc 3		26	BP1
$V_{S S} \quad 4$		25	BP2
5205		24	S1
S19 6		23	S2
S18 7		22	S3
S17 8	PCF2100	21	54
S16 9		20	S5
S15 10		19	S6
S14 11		18	S7
S13 12		17	S8
S12 13		16	S9
S11 14		15	S 10

Fig. 11 Pinning diagram.

