PBM 39702
 DUAL CMOS CODEC/FILTER

General

A monolithic circuit containing A/D- and D/A-conversion and PCM-coding for two separate telephone lines, to be manufactured in a 5 V single supply CMOS process.

Features Complete CODEC and filtering system for two telephone lines including:

- free operational amplifier for gain adjust in both directions
- internal precision voltage reference
- antialiasfiltering
- smoothing filtering
- $\sin x / x$ correlation
- A-law/ μ-law pin selectable
- auto power down mode
- power on reset
- common serial digital I/O both channels
- separate frame sync each channel
- 24 pin VSOP package

Fig. 1 Block Diagram

Pin description

Pin No	Pin Name	I/O	TTL	Function
1	AVDD	-		Analogue positive supply voltage. Systems analogue +5 V supply.
2	TST2	1		Test pin. Tie to logic high for normal operation. The device enters test mode with TST2 low.
3	VFXO-	1		Transmit analogue input Negative input of transmit input amplifier channel 0
4	GSXO	0		Output of transmit input amplifier channel 0
5	VRXO	0		Receive analogue output unamplified, Channel 0
6	VFRO-	1		Negative input of receive output amplifier channel 0
7	GSR0	0		Amplified receive analogue output channel 0
8	TST	I		Test pin. Tie to logic high in normal operation. With TST low, the device enters power down mode.
9	FS0	1	X	Frame sync input for channel 0
10	MCLK	1	X	Master clock.
11	TSX	0		Open drain output pulsing low during digital transmission cycle.
12	DVDD	-		Digital positive supply voltage. Systems digital +5 V supply.
13	DVSS	-		Digital negative supply voltage. Systems digital ground.
14	DX	O		Serial output of digital transmit data.
15	DR	1	X	Serial input of digital receive data.
16	FS1	1	X	Frame sync input for channel 1
17	ALAWN	I	X	Selects A-law or μ-law companding scheme. Logic zero selects A-law.
18	GSR1	0		Amplified receive analogue output channel 1
19	VFR1-	1		Negative input of receive output amplifier channel 1
20	VRX1	0		Receive analogue output unamplified, Channel 1
21	GSX1	0		Output of transmit input amplifier channel 1
22	VFX1-	I		Transmit analogue input Negative input of transmit input amplifier channel 1
23	VREF	0		Band gap stabilized internal reference voltage performing zero level (analogue ground) to the data conversion respective channel. Internally connected to the positive inputs of transmit input and receive output amplifiers. External capacitor $1.0 \mu \mathrm{~F}$ or larger recommended
24	AVSS	-		Analogue negative supply voltage. Systems analogue grond.

Absolute Maximum Ratings

Quantity	Value	Unit
Supply voltage any VDD to AVSS	$-0.3 \ldots+6.5$	V
Voltage DVSS to AVSS	$-0.1 \ldots+0.1$	V
Voltage any pin to AVSS	$-0.3 \ldots+6.5$	V
	and	
	$<$ AVDD +0.3	V
Max current at any pin except supply voltage pins	$-10 \ldots+10$	mA
(Latch-up immunity)		
Operating temperature	$0 \ldots+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	$-55 \ldots+125$	${ }^{\circ} \mathrm{C}$
Lead temperature, soldering 10 seconds	+235	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Quantity	Value	Unit
AVDD Supply Voltage	$4.75 . .5 .25$	V
DVDD Supply Voltage	$4.75 . . \mathrm{AVDD}$	V
Ambient Operating Temperature	$0 \ldots+85$	${ }^{\circ} \mathrm{C}$
Master Clock Frequency	2.048	MHz

Electrical characteristics

Unless otherwise noted, the specification applies for TA $=0$ to $+85 \infty \mathrm{C}$,
DVDD $=A V D D=5 \mathrm{~V} \pm 5 \%$, $D V S S=A V S S=0 \mathrm{~V}$ and $\mathrm{MCLK}=2.048 \mathrm{MHz}$.

Power dissipation

Quantity	Conditions	Min	Typ	Max	Unit
Power dissipation	Outputs unloaded	60	80	mW	

Digital Interface

Quantity	Conditions	Min	Typ
Input Low Voltage		Max	Unit
Input High Voltage	$\mathrm{IL}=3.2 \mathrm{~mA}$	0.8	V
Output Low Voltage	$\mathrm{IL}=3.2 \mathrm{~mA}$	V	
Output High Voltage		2.0	V
Input Current		-10	V
Input Capacitance	Tri-state mode	-10	$\mu \mathrm{~A}$
Output Current		-10	pF

Analogue Interface Transmit Input Amplifier

Quantity	Conditions	Min	Typ	Max	Unit
Input Leakage Current	$0.6 \mathrm{~V}<\mathrm{V}<4.2 \mathrm{~V}$	-100		+100	nA
Input Resistance		10			$\bar{M} \Omega$
Input Voltage	Relative AVSS	2.3	2.4	2.5	V
Voltage Gain		5000			V/V
Unity-Gain Bandwidth		1.0	2.0		MHz
Offset Voltage		-20		+20	mV
Load Resistance		10			k Ω
Load Capacitance				50	pF
Output Voltage Swing			3.6		Vpp
Output resistance				10	Ω
Power Supply Rejection Ratio *	0-60kHz	40			dB

* Note: $20 \mathrm{k} \Omega$ between GSXn and VFXn ($\mathrm{n}=0,1$)

Analogue Interface Receive Output

	Conditions	Min	Typ	Max
Quantity			Unit	
Output Resistance	0 dBm0 PCM code	2.3	2.4	2.5
Output Voltage		3.6	V	
Output Voltage Swing	10		Vpp	
Load Resistance		$\mathrm{k} \Omega$		
Load Capacitance		pF		

Analogue Interface Receive Output Amplifier

Quantity	Conditions	Min	Typ	Max	Unit
Input Leakage Current	$0.6 \mathrm{~V}<\mathrm{V}<4.2 \mathrm{~V}$	-100		+100	nA
Input Resistance		10			$\overline{\mathrm{M} \Omega}$
Input Voltage		2.3	2.4	2.5	V
Voltage Gain		5000			V/V
Unity-Gain Bandwidth		1.0	2.0		MHz
Offset Voltage		-20		+20	mV
Load Resistance		10			k
Load Capacitance				50	pF
Output Voltage Swing			3.6		Vpp
Output Resistance				10	Ω
Power Supply Rejection Ratio *	$0-60 \mathrm{kHz}$	40			dB

* Note: $20 \mathrm{k} \Omega$ between GSRn and VFRn ($\mathrm{n}=0,1$)

Transmission characteristics

Unless otherwise noted, the specification applies for $\mathrm{TA}=0$ to $+85^{\circ} \mathrm{C}$, DVDD $=\mathrm{AVDD}=5 \mathrm{~V} \pm 5 \%$, DVSS $=\mathrm{AVSS}=0 \mathrm{~V}$ and MCLK $=2.048 \mathrm{MHz}$. Analog input is a $0 \mathrm{dBm0}, 1020 \mathrm{~Hz}$ sine wave; transmit input amplifier set for unity gain. Digital input is a code sequence for $0 \mathrm{dBm0} 0,1020 \mathrm{~Hz}$ sine wave. Conditions and values should be measured related to the system analogue ground, i.e. AVSS, see Typical Application.

Absolute Gain

Quantity	Conditions	Min	Typ	Max	Unit
Analogue Input Level	$0 \mathrm{dBm0}$		0.849		Vrms
Absolute Transmit Gain		-0.25		+0.25	dB
Absolute Transmit Gain	$@ \mathrm{VDD}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-0.15		+0.15	dB
Analogue Output Level	$0 \mathrm{dBm0}$		0.849		Vrms
Absolute Receive Gain		-0.25		+0.25	dB
Absolute Receive Gain	$@ \mathrm{VDD}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-0.15		+0.15	dB
Maximum Overload Level	3.14 dBm0		1.219		Vrms

Gain Tracking

Quantity	Conditions	Min	Typ	Max
Transmit Gain Tracking Error				
Reference Level:	$+3 \mathrm{dBm} 0 \mathrm{to}-40 \mathrm{dBm0}$	-0.2	+0.2	dB
$-10 \mathrm{dBm0}$ sine wave	$-40 \mathrm{dBm0}$ to $-50 \mathrm{dBm0}$	0.4	+0.4	dB
	$-50 \mathrm{dBm0}$ to $-55 \mathrm{dBm0}$	-1.2	+1.2	dB
Receive Gain Tracking Error				
Reference Input: sine wave	$+3 \mathrm{dBm0}$ to $-40 \mathrm{dBm0}$	-0.2	+0.2	dB
$-10 \mathrm{dBm0} \mathrm{PCM} \mathrm{code}$	$-40 \mathrm{dBm0}$ to $-50 \mathrm{dBm0}$	-0.4	+0.4	dB
	$-50 \mathrm{dBm0}$ to $-55 \mathrm{dBm0}$	-1.2	+1.2	dB

Frequency response

Quantity	Conditions	Min	Typ	Max
Transmit Gain Relative Gain	$\mathrm{f}=50 \mathrm{~Hz}$		-30	dB
	$\mathrm{f}=60 \mathrm{~Hz}$	-26	dB	
	$\mathrm{f}=200 \mathrm{~Hz}$	-1.8	0	dB
	$\mathrm{f}=300 \mathrm{~Hz}-3000 \mathrm{~Hz}$	-0.15	+0.15	dB
	$\mathrm{f}=3400 \mathrm{~Hz}$	-0.8	0	dB
	$\mathrm{f} \geq 4000 \mathrm{~Hz}$	-14	dB	
Receive Gain Relative Gain	$\mathrm{f}=0 \mathrm{~Hz}-3000 \mathrm{~Hz}$	-0.15	+0.15	dB
	$\mathrm{f}=3400 \mathrm{~Hz}$	-0.8	0	dB
	$\mathrm{f} \geq 4000 \mathrm{~Hz}$		-14	

Distorsion

Quantity	Conditions	Min	Typ	Max	Unit
Transmit Signal to Distortion	$0 \mathrm{dBm0} 0-30 \mathrm{dBm0}$	36			dB
	$-30 \mathrm{dBm0} 0-40 \mathrm{dBm0}$	30			dB
	$-40 \mathrm{dBm0}-45 \mathrm{dBm} 0$	25			dB
Receive Signal to Distortion	$0 \mathrm{dBm0} 0-30 \mathrm{dBm0}$	36			dB
	-30 dBm0 - $40 \mathrm{dBm0}$	30			dB
	-40 dBm0 - -45 dBm0	25			dB
Single Frequency Distortion:					
Transmit				-46	dB
Recieve				-46	dB
Intermodulation Distortion	Two frequencies in the range $300 \mathrm{~Hz}-3400 \mathrm{~Hz}$ at $-6 \mathrm{dBm0}$			-42	dB

Envelope Delay Distorsion

Quantity	Conditions	Min	Typ	Max	Unit
Transmit Delay, Absolute	$\mathrm{f}=1600 \mathrm{~Hz}$			315	us
Transmit Delay, Relative	$\mathrm{f}=500 \mathrm{~Hz}-600 \mathrm{~Hz}$			220	us
	$\mathrm{f}=600 \mathrm{~Hz}-1000 \mathrm{~Hz}$			145	us
	$\mathrm{f}=1000 \mathrm{~Hz}-2600 \mathrm{~Hz}$			75	us
	$\mathrm{f}=2600 \mathrm{~Hz}-2800 \mathrm{~Hz}$			105	us
	$\mathrm{f}=2800 \mathrm{~Hz}-3000 \mathrm{~Hz}$			155	us
Receive Delay, Absolute	$\mathrm{f}=1600 \mathrm{~Hz}$			202	us
Receive Delay, Relative	$\mathrm{f}=500 \mathrm{~Hz}-1000 \mathrm{~Hz}$	-40			us
	$\mathrm{f}=1000 \mathrm{~Hz}-1600 \mathrm{~Hz}$	-30			us
	$\mathrm{f}=1600 \mathrm{~Hz}-2600 \mathrm{~Hz}$			90	us
	$\mathrm{f}=2600 \mathrm{~Hz}-2800 \mathrm{~Hz}$			125	us
	$\mathrm{f}=2800 \mathrm{~Hz}-3000 \mathrm{~Hz}$			175	us

Noise

Quantity	Conditions	Min	Typ	Max	Unit
Transmit Noise, Psophometric					
Weighted, A-law			-85	-80	dBm0p
Transmit Noise, C Message					
Weighted, u-law			5	10	dBrnC0
Receive Noise, Psophometric					
Weighted, A-law			-85	-80	dBm0p
Receive Noise, C Message					
Weighted, u-law			5	10	dBrnC0
Noise, Single Frequency	VFXIN = 0 Vrms, DR = DX			-53	$\mathrm{dBm0}$
PSRR, Transmit	DVDD = AVDD =				
	$=5.0 \mathrm{~V}+0.1 \mathrm{Vrms}$				
	$\mathrm{f}=0 \mathrm{~Hz}-50000 \mathrm{~Hz}$	40			dB
PSRR, Receive	PCM code is pos. zero				
	DVDD = AVDD =				
	$5.0 \mathrm{~V}+0.1 \mathrm{Vrms}$				
	$\mathrm{f}=0 \mathrm{~Hz}-50000 \mathrm{~Hz}$	40			dB
Spurious Out-of-Band	Input: 0 dBm0,				
Signals at VRX Output	$300 \mathrm{~Hz} \mathrm{--} 3400 \mathrm{~Hz}$				
	PCM code applied				
	$4.6 \mathrm{kHz}-7.6 \mathrm{kHz}$			-30	dB
	$7.6 \mathrm{kHz}-8.4 \mathrm{kHz}$			tbd	dB
	$8.4 \mathrm{kHz}-100 \mathrm{kHz}$			-32	dB

Interchannel Crosstalk

Quantity	Conditions	Min	Typ	Max	Unit
Transmit to Receive	$0 \mathrm{dBm0}$ at VFXIN			-75	dB
	Channel under test: Idle PCM code				
Receive to Transmit	$0 \mathrm{dBm0}$ code level			-75	dB
	Channel under test:				
	VFXIN $=0 \mathrm{Vrms}$				
Transmit to Transmit	$0 \mathrm{dBm0}$ at VFXIN			-75	dB
	Channel under test:				
	VFXIN = 0 Vrms				
Receive to Receive	$0 \mathrm{dBm0}$ code level			-75	dB
	Channel under test				
	Idle PCM code				

Intrachannel Crosstalk

Quantity	Conditions	Min	Typ	Max
Transmit to Receive	$0 \mathrm{dBm0}$ at VFXIN	Unit		
	Idle PCM code	-75	dB	
Receive to Transmit	$\mathrm{VFXIN}=0$ Vrms			
	$0 \mathrm{dBm0}$ code level	-75	dB	

Timing and Control specification

Power on Reset

Power on reset is implemented for the power supply related power up. During the typical 20 ms initialization sequence, any input on $F S n(n=0,1)$ will not be taken notice of.

Long/Short Frame Sync

Long or short frame sync timing mode is defined by the first frame sync pulse after power up. This apply to power supply related power up as well as power up after power down.

Long frame sync timing is selected if first frame sync is two or more MCLK pulses. Otherwise short frame sync timing is selected.

Time Slot Assignment

Both FS0 and FS1 must be derived from MCLK and both should have a periodicity of 256 MCLK cycles.

Time slot 0 is determined by the slot defined by FS0 or FS1 whichever comes first. If the other channel is to be used, FS for other channel must be delayed from the first by a multiple of 8 MCLK cycles.

In order to change channel/s/ in use and time slot of each channel in use, the device must be reset to power down (TST pin low or absence of FSO and FS1), before channels and time slots can be selected as described above.

Auto Power Down Mode

The device enters powerdown mode if either TST pin is low or the FS0 or FS1 defining time slot 0 , is not present within $500 \mu \mathrm{~s}$ (i.e. 4 time frames).

Power down is not guaranteed if MCLK is lost unless the device was already in power down mode due to the absence of frame sync.

Timing Specification

Unless otherwise noted, the specification applies for $\mathrm{TA}=0$ to $+85^{\circ} \mathrm{C}$, $\mathrm{DVDD}=\mathrm{AVDD}=5 \mathrm{~V} \pm 5 \%$,
DVSS $=\mathrm{AVSS}=0 \mathrm{~V}, \mathrm{MCLK}=2.048 \mathrm{Mhz}, \mathrm{VIH}=2.0 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}, \mathrm{VOL}=0.4 \mathrm{~V}$ and $\mathrm{VOH}=2.4 \mathrm{~V}$

Parameter	Symbol	Ref fig	Min	Typ	Max	Unit
Frequency of Master Clock, MCLK 1)	1/TPM	2		2.048		MHz
Width of Master Clock High	tWMH	2	195			ns
Width of Master Clock Low	tWML	2	195			ns
Rise time of Master Clock	tRM	2			40	ns
Fall time of Master Clock	tFM	2			40	ns
Delay time to valid Data from FS or MCLK, whichever comes later, and Delay time from FS to Data Output disabled 2)	tDZF	3	20		165	ns
Delay time from MCLK Low to Data Output disabled	tDZC	2	50		165	ns
Setup time from DR Valid to MCLK Low	tSDM	3	40			ns
Hold time from MCLK Low to DR Invalid	tHMD	3	50			ns
Hold time from MCLK Low to Frame Sync	tHMF	3	10			ns
Setup time from Frame Sync to MCLK	tSFM	3	70		$\mathrm{T}_{\text {PM }}-70$	ns
Hold time from 3rd period in time slot of MCLK Low to Frame Sync	tHMFI	3	90			ns
Delay time from MCLK High to Data Valid 2)	tDMD	2	0		170	ns
Setup time from FS to MCLK Low	tSF	2	80		$\mathrm{T}_{\text {PM }}-80$	ns
Hold time from MCLK Low to FS Low	tHF	2	100			ns
Delay time TSX Low 3)	tXDP	2	0		140	ns

Note : 1) MCLK must be continuously present except when TST pin is low
2) Load on DX 150 pF plus 2 LSTTL Loads
3) Load on TSX 150 pF

Fig. 2 Short Frame Sync Timing Diagram

Fig. 3 Long Frame Sync Timing Diagram

Fig 4. Typical application (one channel)

Specifications subject to change without notice.

ERICSSON

Ericsson Components AB
S-164 81 Kista-Stockholm, Sweden
Telephone: (08) 7575000

