DISTINCTIVE CHARACTERISTICS

- Pin and function compatible with all 20-pin GAL devices
- Electrically erasable CMOS technology provides reconfigurable logic and full testability
■ High-speed CMOS technology
- 5 -ns propagation delay for "-5" version
- 7.5 -ns propagation delay for "-7" version
- Direct plug-in replacement for the PAL16R8 series and most of the PAL10H8 series
- Outputs programmable as registered or combinatorial in any combination
■ Peripheral Component Interconnect (PCI) compliant

■ Programmable output polarity
■ Programmable enable/disable control

- Preloadable output registers for testability

■ Automatic register reset on power up
■ Cost-effective 20-pin plastic DIP, PLCC, and SOIC packages

- Extensive third-party software and programmer support through FusionPLD partners
- Fully tested for 100% programming and functional yields and high reliability
- 5 ns version utilizes a split leadframe for improved performance

GENERAL DESCRIPTION

The PALCE16V8 is an advanced PAL device built with low-power, high-speed, electrically-erasable CMOS technology. It is functionally compatible with all 20-pin GAL devices. The macrocells provide a universal device architecture. The PALCE16V8 will directly replace the PAL16R8 and PAL10H8 series devices, with the exception of the PAL16C1.

The PALCE16V8 utilizes the familiar sum-of-products (AND/OR) architecture that allows users to implement complex logic functions easily and efficiently. Multiple levels of combinatorial logic can always be reduced to sum-of-products form, taking advantage of the very wide input gates available in PAL devices. The equations are programmed into the device through floatinggate cells in the AND logic array that can be erased electrically.

The fixed OR array allows up to eight data product terms per output for logic functions. The sum of these products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial with an activehigh or active-low output. The output configuration is determined by two global bits and one local bit controlling four multiplexers in each macrocell.

AMD's FusionPLD program allows PALCE16V8 designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that thirdparty tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar.

BLOCK DIAGRAM

16493D-1

CONNECTION DIAGRAMS

Top View

DIP/SOIC

Note: Pin 1 is marked for orientation.
PIN DESIGNATIONS

PLCC/LCC

CLK	$=$ Clock
GND	$=$ Ground
I	$=$ Input
$\overline{I / O}$	$=$ Input/Output
OE	$=$ Output Enable
VCC	$=$ Supply Voltage

ORDERING INFORMATION

Commercial and Industrial Products

AMD programmable logic products for commercial and industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations		
PALCE16V8H-5	JC	$/ 5$
PALCE16V8H-7	PC, JC	
PALCE16V8H-10	PC, JC, SC, PI, JI	$/ 4$
PALCE16V8Q-10	PC, JC, SC	$/ 5$
PALCE16V8H-15	PC, JC, SC, PI, JI	
PALCE16V8Q-15	PC, JC	
PALCE16V8Q-20	PI, JI	Blank,
PALCE16V8H-25	PC, JC, SC, PI, JI	
PALCE16V8Q-25	PC, JC, PI, JI	

Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

The PALCE16V8 is a universal PAL device. It has eight independently configurable macrocells ($\mathrm{MC}_{0}-\mathrm{MC}_{7}$). Each macrocell can be configured as registered output, combinatorial output, combinatorial I/O or dedicated input. The programming matrix implements a programmable AND logic array, which drives a fixed OR logic array. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Pins 1 and 11 serve either as array inputs or as clock (CLK) and output enable $(\overline{\mathrm{OE}})$, respectively, for all flip-flops.

Unused input pins should be tied directly to V_{cc} or GND. Product terms with all bits unprogrammed (disconnected) assume the logical HIGH state and product terms with both true and complement of any input signal connected assume a logical LOW state.

The programmable functions on the PALCE16V8 are automatically configured from the user's design
specification. The design specification is processed by development software to verify the design and create a programming file (JEDEC). This file, once downloaded to a programmer, configures the device according to the user's desired function.

The user is given two design options with the PALCE16V8. First, it can be programmed as a standard PAL device from the PAL16R8 and PAL10H8 series. The PAL programmer manufacturer will supply device codes for the standard PAL device architectures to be used with the PALCE16V8. The programmer will program the PALCE16V8 in the corresponding architecture. This allows the user to use existing standard PAL device JEDEC files without making any changes to them. Alternatively, the device can be programmed as a PALCE16V8. Here the user must use the PALCE16V8 device code. This option allows full utilization of the macrocell.

*In macrocells MC0 and MC7, SG1 is replaced by $\overline{\mathrm{SGO}}$ on the feedback multiplexer.
16493D-4

PALCE16V8 Macrocell

Configuration Options

Each macrocell can be configured as one of the following: registered output, combinatorial output, combinatorial I/O, or dedicated input. In the registered output configuration, the output buffer is enabled by the $\overline{O E}$ pin. In the combinatorial configuration, the buffer is either controlled by a product term or always enabled. In the dedicated input configuration, it is always disabled. With the exception of MC_{0} and MC_{7}, a macrocell configured as a dedicated input derives the input signal from an adjacent I/O. MC 0 derives its input from pin $11(\overline{\mathrm{OE}})$ and MC_{7} from pin 1 (CLK).

The macrocell configurations are controlled by the configuration control word. It contains 2 global bits (SG0 and SG1) and 16 local bits (SLO 0_{0} through SLO_{7} and SL10 through SL17). SG0 determines whether registers will be allowed. SG1 determines whether the PALCE16V8 will emulate a PAL16R8 family or a PAL10H8 family device. Within each macrocell, SLOx, in conjunction with SG1, selects the configuration of the macrocell, and SL1x sets the output as either active low or active high for the individual macrocell.

The configuration bits work by acting as control inputs for the multiplexers in the macrocell. There are four multiplexers: a product term input, an enable select, an output select, and a feedback select multiplexer. SG1 and SLOx are the control signals for all four multiplexers. In MC_{0} and $\mathrm{MC}_{7}, \overline{\mathrm{SGO}}$ replaces SG1 on the feedback multiplexer. This accommodates CLK being the adjacent pin for MC_{7} and $\overline{\mathrm{OE}}$ the adjacent pin for MC_{0}.

Registered Output Configuration

The control bit settings are $\mathrm{SG} 0=0, \mathrm{SG} 1=1$ and $\mathrm{SL} 0_{x}=$ 0 . There is only one registered configuration. All eight product terms are available as inputs to the OR gate. Data polarity is determined by SL1x. The flip-flop is loaded on the LOW-to-HIGH transition of CLK. The feedback path is from \bar{Q} on the register. The output buffer is enabled by $\overline{\mathrm{OE}}$.

Combinatorial Configurations

The PALCE16V8 has three combinatorial output configurations: dedicated output in a non-registered device, I/O in a non-registered device and I/O in a registered device.

Dedicated Output in a Non-Registered Device

The control bit settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=0$ and $\mathrm{SL} 0 \mathrm{x}=$ 0 . All eight product terms are available to the OR gate. Although the macrocell is a dedicated output, the feedback is used, with the exception of pins 15 and 16. Pins 15 and 16 do not use feedback in this mode. Because CLK and $\overline{O E}$ are not used in a non-registered device, pins 1 and 11 are available as input signals. Pin 1 will
use the feedback path of MC_{7} and pin 11 will use the feedback path of MC_{0}.

Combinatorial I/O in a Non-Registered Device

The control bit settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=1$, and $\mathrm{SL} 0_{x}=$ 1. Only seven product terms are available to the OR gate. The eighth product term is used to enable the output buffer. The signal at the I/O pin is fed back to the AND array via the feedback multiplexer. This allows the pin to be used as an input.

Because CLK and $\overline{O E}$ are not used in a non-registered device, pins 1 and 11 are available as inputs. Pin 1 will use the feedback path of MC_{7} and pin 11 will use the feedback path of MC_{0}.

Combinatorial I/O in a Registered Device

The control bit settings are $\mathrm{SG} 0=0, \mathrm{SG} 1=1$ and $\mathrm{SL} 0_{x}=$ 1. Only seven product terms are available to the OR gate. The eighth product term is used as the output enable. The feedback signal is the corresponding I/O signal.

Dedicated Input Configuration

The control bit settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=0$ and $\mathrm{SLO} 0_{x}=$ 1. The output buffer is disabled. Except for MC_{0} and MC_{7} the feedback signal is an adjacent I / O. For MC_{0} and MC_{7} the feedback signals are pins 1 and 11. These configurations are summarized in Table 1 and illustrated in Figure 2.

Table 1. Macrocell Configuration

SG0	SG1	SLOx	Cell Configuration	Devices Emulated
Device Uses Registers				
0	1	0 1	Registered Output Combinatorial I/O	$\begin{aligned} & \hline \text { PAL16R8, 16R6, } \\ & \text { 16R4 } \\ & \text { PAL16R6, 16R4 } \end{aligned}$
Device Uses No Registers				
1	0	0	Combinatorial Output	PAL10H8, 12H6, 14H4, 16H2, 10L8,
1	0	1	Input	$\begin{aligned} & \text { PAL12H6, 14H4, } \\ & 16 \mathrm{H} 2,12 \mathrm{~L} 6,14 \mathrm{~L} 4, \\ & 16 \mathrm{~L} 2 \end{aligned}$
1	1	1	Combinatorial I/O	PAL16L8

Programmable Output Polarity

The polarity of each macrocell can be active-high or ac-tive-low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" efforts.

Selection is through a programmable bit SL1x which controls an exclusive-OR gate at the output of the AND/ OR logic. The output is active high if $\operatorname{SL} 1_{x}$ is 1 and active low if $S L 1_{\mathrm{x}}$ is 0 .

Registered Active Low

Combinatorial I/O Active Low

Combinatorial Output Active Low

Notes:

1. Feedback is not available on pins 15 and 16 in the combinatorial output mode.
2. This configuration is not available on pins 15 and 16.

Registered Active High

Combinatorial I/O Active High

Combinatorial Output Active High

Figure 2. Macrocell Configurations

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. Outputs of the PALCE16V8 will depend on whether they are selected as registered or combinatorial. If registered is selected, the output will be HIGH. If combinatorial is selected, the output will be a function of the logic.

Register Preload

The register on the PALCE16V8 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Bit

A security bit is provided on the PALCE16V8 as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback and verification of the programmed pattern by a device programmer, securing proprietary designs from competitors. The bit can only be erased in conjunction with the array during an erase cycle.

Electronic Signature Word

An electronic signature word is provided in the PALCE16V8 device. It consists of 64 bits of programmable memory that can contain user-defined data. The signature data is always available to the user independent of the security bit.

Programming and Erasing

The PALCE16V8 can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Quality and Testability

The PALCE16V8 offers a very high level of built-in quality. The erasability of the device provides a direct means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The high-speed PALCE16V8 is fabricated with AMD's advanced electrically erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

PCI Compliance

The PALCE22V10H-7/10 is fully compliant with the PCl Local Bus Specification published by the PCI Special Interest Group. The PALCE22V10H-7/10's predictable timing ensures compliance with the PCI AC specifications independent of the design.

LOGIC DIAGRAM

16493D-6

LOGIC DIAGRAM (continued)

ABSOLUTE MAXIMUM RATINGS
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
Static Discharge Voltage
2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$)
100 mA

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{VcC}=\mathrm{Min} & \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL} \\ \mathrm{~V} \mathrm{CC}=\mathrm{Min} & \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	$\mathrm{VIN}=5.25 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN = 0 V, Vcc = Max (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \mathrm{~V}, \text { VCC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, } \mathrm{V}_{\text {CC }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }}(\text { Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 3)	-30	-150	mA
Icc (Static)	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$), $\mathrm{VIN}=0 \mathrm{~V}$ Vcc = Max		125	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozh).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	V IN $=2.0 \mathrm{~V}$	$\mathrm{V} C=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1 \mathrm{MHz}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\begin{gathered} \operatorname{Min} \\ (\text { Note 5) } \end{gathered}$	Max	Unit
tpD	Input or Feedback to Combinatorial Output			1	5	ns
ts	Setup Time from Input or Feedback to Clock			3		ns
th	Hold Time			0		ns
tco	Clock to Output			1	4	ns
tskewr	Skew Between Registered Outputs (Note 4)				1	ns
twL	Clock Width	LOW		3		ns
twh		HIGH		3		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts+tco)	142.8		MHz
		Internal Feedback (fcnt),	1/(ts+tcF) (Note 6)	166		MHz
		No Feedback	1/(twh+twL)	166		MHz
tpzx	$\overline{\text { OE }}$ to Output Enable			1	6	ns
tpxZ	$\overline{\text { OE }}$ to Output Disable			1	5	ns
teA	Input to Output Enable Using Product Term Control			2	6	ns
ter	Input to Output Disable Using Product Term Control			2	5	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Skew testing takes into account pattern and switching direction differences between outputs that have equal loading.
5. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z X}, t_{P X Z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
6. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground
. -0.5 V to +7.0 V
DC Input Voltage -0.5 V to V cc +1.0 V
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$
Static Discharge Voltage
2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)
100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{CC})
with Respect to Ground +4.75 V to +5.25 V
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{VIN}=\mathrm{V} \text { IH or } \mathrm{VIL} \\ \mathrm{~V} \text { CC }=\mathrm{Min} & \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{VCC}=\mathrm{Min} & \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN = 5.5 V, Vcc = Max (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { VOUT }=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \text { VIN }=\text { VIL or } \mathrm{VIH}(\text { Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, } \mathrm{VCC}=\mathrm{Max} \\ & \text { VIN }=\text { VIL or VIH (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-150	mA
Icc (Dynamic)	Supply Current	$\begin{aligned} & \text { Outputs Open, }(\text { lout }=0 \mathrm{~mA}) \text {, } \\ & \text { Vcc }=\mathrm{Max}, \mathrm{f}=25 \mathrm{MHz} \end{aligned}$		115	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	V IN $=2.0 \mathrm{~V}$	$\mathrm{V} C=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1 \mathrm{MHz}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\operatorname{Min}_{(\text {Note 5) }}$	Max	Unit
tpd	Input or Feedback to Combinatorial Output		8 Outputs Switching	3	7.5	ns
			1 Output Switching	3	7	ns
ts	Setup Time from Input or Feedback			5		ns
th	Hold Time			0		ns
tco	Clock to Output			1	5	ns
tskewr	Skew Between Registered Outputs (Note 4)				1	ns
twL	Clock Width	LOW		4		ns
twh		HIGH		4		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	100		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 6)	125		MHz
		No Feedback	1/(twh + twL)	125		MHz
tpzx	$\overline{\text { OE to Output Enable }}$			1	6	ns
tpxa	$\overline{\text { OE to Output Disable }}$			1	6	ns
tea	Input to Output Enable Using Product Term Control			3	9	ns
ter	Input to Output Disable Using Product Term Control			3	9	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Skew testing takes into account pattern and switching direction differences between outputs that have equal loading.
5. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z x}, t_{P X z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
6. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage
2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Supply Voltage (Vcc) with
Respect to Ground
+4.75 V to +5.25 V

Industrial (I) Devices

Temperature (T_{A}) Operating
in Free Air . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{VIN}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL} \\ \mathrm{VCC}=\mathrm{Min} & \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \hline \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} & \end{array}$		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{VcC}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{VcC}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \mathrm{~V}, \text { VCC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC }=\text { Max } \\ & \text { VIN }=\text { VIH or }_{\text {VIL }} \text { (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V Vcc = Max (Note 3)	-30	-150	mA
Icc (Dynamic)	Commercial Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$)$\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$		115	mA
	Industrial Supply Current			130	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{V} \mathrm{V}=2.0 \mathrm{~V}$	$\mathrm{~V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\begin{gathered} \text { Min } \\ \text { (Note 4) } \end{gathered}$	Max	Unit
tpd	Input or Feedback to Combinatorial Output			3	10	ns
ts	Setup Time from Input or Feedback to Clock			7.5		ns
th	Hold Time			0		ns
tco	Clock to Output			3	7.5	ns
twL	Clock Width	LOW		6		ns
twh		HIGH		6		ns
$f_{\text {max }}$	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	66.7		MHz
		Internal Feedback (fcnt)	1/(ts + tcF) (Note 5)	71.4		MHz
		No Feedback	1/(twh + twL)	83.3		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable			2	10	ns
tpxZ	$\overline{\text { OE to Output Disable }}$			2	10	ns
tea	Input to Output Enable Using Product Term Control			3	10	ns
ter	Input to Output Disable Using Product Term Control			3	10	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z x}, t_{P X z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
5. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Static Discharge Voltage
2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$)
100 mA

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{Vcc}=\mathrm{Min} & \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{VIN}=\mathrm{V} \text { IH or } \mathrm{VIL} \\ \mathrm{VCC}=\mathrm{Min} & \end{array}$		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN $=5.25 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max} \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-150	mA
Icc	Supply Current (Dynamic)	Outputs Open (lout = 0 mA) $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$		55	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	V IN $=2.0 \mathrm{~V}$	$\mathrm{V} C=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1 \mathrm{MHz}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\begin{gathered} \operatorname{Min} \\ \text { (Note 4) } \end{gathered}$	Max	Unit
tpD	Input or Feedback to Combinatorial Output			3	10	ns
ts	Setup Time from Input or Feedback to Clock			7.5		ns
th	Hold Time			0		ns
tco	Clock to Output			3	7.5	ns
twL	Clock Width	LOW		6		ns
twh		HIGH		6		ns
$f_{\text {max }}$	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	66.7		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 5)	71.4		MHz
		No Feedback	1/(twh + twL)	83.3		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable			2	10	ns
tpxZ	$\overline{\text { OE }}$ to Output Disable			2	10	ns
tEA	Input to Output Enable Using Product Term Control			3	10	ns
ter	Input to Output Disable Using Product Term Control			3	10	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z x}, t_{P X z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
5. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
\ldots.
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage
2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Supply Voltage (Vcc) with
Respect to Ground
+4.75 V to +5.25 V

Industrial (I) Devices

Temperature (T_{A}) Operating
in Free Air . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{aligned} & \mathrm{IOH}=-3.2 \mathrm{~mA} \quad \mathrm{~V} I \mathrm{~N}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V} \mathrm{CC}=\mathrm{Min} \end{aligned}$		2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \hline \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} & \end{array}$			0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
IIH	Input HIGH Leakage Current	VIN = 5.25 V, VCC = Max (Note 2)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max}$ (Note 2)			-100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { VIN }=\text { VIH or } \mathrm{VIL}^{2} \text { (Note 2) } \end{aligned}$			10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW				-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)		-30	-150	mA
IcC (Dynamic)	Commercial Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$	H		90	mA
Icc (Dynamic)	Industrial Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$	H		130	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozl (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{V} \mathrm{VN}=2.0 \mathrm{~V}$	$\mathrm{~V} \mathrm{CC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-15		-20		-25		Unit
				Min	Max	Min	Max	Min	Max	
tpd	Input or Feedback to Combinatorial Output				15		20		25	ns
ts	Setup Time from Input or Feedback to Clock			12		13		15		ns
th	Hold Time			0		0		0		ns
tco	Clock to Output				10		11		12	ns
twL	Clock Width	LOW		8		10		12		ns
twh		HIGH		8		10		12		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	45.5		41.6		37		MHz
		Internal Feedback (fCNT)	$\begin{array}{\|l} \hline 1 /(\text { ts }+ \text { tco }) \\ (\text { Note 4) } \\ \hline \end{array}$	50		45.4		40		MHz
		No Feedback	1/(twh + twL)	62.5		50.0		41.6		MHz
tPZX	$\overline{\mathrm{OE}}$ to Output Enable				15		18		20	ns
tPXZ	$\overline{\text { OE to Output Disable }}$				15		18		20	ns
tEA	Input to Output Enable Using Product Term Control				15		18		20	ns
tER	Input to Output Disable Using Product Term Control				15		18		20	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

Combinatorial Output

Clock

Clock Width

Registered Output

16493D-10
Input to Output Disable/Enable

$\overline{O E}$ to Output Disable/Enable

Notes:

1. $V_{T}=1.5 \mathrm{~V}$
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times $2 n s-5$ ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Will be be
Steady		

SWITCHING TEST CIRCUIT

Specification	S1	CL	Commercial		Measured Output Value
			R1	R2	
tpd, tco	Closed	50 pF	200Ω	390Ω	1.5 V
tea	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Open } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Closed } \end{aligned}$				1.5 V
ter	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z} \text { : Open } \\ & \mathrm{L} \rightarrow \mathrm{Z} \text { : Closed } \end{aligned}$	5 pF		$\begin{aligned} & \mathrm{H}-5: \\ & 200 \Omega \end{aligned}$	$\begin{aligned} \mathrm{H} & \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ \mathrm{~L} & \rightarrow \mathrm{Z}: \mathrm{Vol}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS

$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

The selected "typical" pattern utilized 50\% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching.

By utilizing 50\% of the device, a midpoint is defined for Icc. From this midpoint, a designer may scale the Icc graphs up or down to estimate the Icc requirements for a particular design.

ENDURANCE CHARACTERISTICS

The PALCE16V8 is manufactured using AMD's advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar
parts. As a result, the device can be erased and reprogrammed-a feature which allows 100% testing at the factory.

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

ROBUSTNESS FEATURES

PALCE16V8X-X/5 devices have some unique features that make them extremely robust, especially when operating in high-speed design environments. Pull-up resistors on inputs and I/O pins cause unconnected pins to default to a known state. Input clamping circuitry limits negative overshoot, eliminating the possibility of false
clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse width of less than about 100 ns for the $/ 5$ versions. Selected /4 devices are also being retrofitted with these robustness features. See chart below for device listings.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR /5 VERSIONS AND SELECTED /4 VERSIONS*

Typical Input

Typical Output
16493D-14
$*$

Device	Rev Letter	
	Filter Only	Filter and Pullups
PALCE16V8H-10	E, F, K	L
PALCE16V8H-15	D, E, F, G, I, J, K	L, M
PALCE16V8Q-15	D, G, J	M
PALCE16V8H-25	D, G, J	M
PALCE16V8Q-25	D, G, J	M

Topside Marking:

AMD CMOS PLD's are marked on the top of the package in the following manner:

PALCEXXXX
Date Code (3 numbers) Lot ID (4 characters)- -(Rev. Letter)
The Lot ID and Rev Letter are separated by two spaces.

POWER-UP RESET

The PALCE16V8 has been designed with the capability to reset during system power-up. Following power-up, all flip-flops will be reset to LOW. The output state will be HIGH independent of the logic polarity. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset
and the wide range of ways $\mathrm{V}_{C C}$ can rise to its steady state, two conditions are required to insure a valid power-up reset. These conditions are:

- The V_{cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Descriptions	Min	Max	Unit
tpR	Power-Up Reset Time		1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics		
twL	Clock Width LOW			

16493D-15

Power-Up Reset Waveform

TYPICAL THERMAL CHARACTERISTICS

/4 Devices (PALCE16V8H-10/4)

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description		Typ		Unit
			PDIP	PLCC	
$\theta_{\text {jc }}$	Thermal Impedance, Junction to Case		25	22	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ja }}$	Thermal Impedance, Junction to Ambient		71	64	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jma }}$	Thermal Impedance, Junction to Ambient with Air Flow	200 Ifpm air	61	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	55	51	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 lfpm air	51	47	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	47	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

/5 Devices (PALCE16V8H-7/5)

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description				Unit
			PDIP	PLCC	
$\theta_{\text {jc }}$	Thermal Impedance, Junction to Case		29	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ja }}$	Thermal Impedance, Junction to Ambient		70	61	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jma }}$	Thermal Impedance, Junction to Ambient with Air Flow	200 Ifpm air	64	53	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	58	47	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	53	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 lfpm air	X	X	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic $\theta_{j c}$ Considerations

The data listed for plastic $\theta_{j c}$ are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the $\theta_{j c}$ measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, $\theta_{j c}$ tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

DISTINCTIVE CHARACTERISTICS

■ Zero-Power CMOS technology

- 15- $\mu \mathrm{A}$ Standby Current ($-15 / 25$)
- 30- $\mathrm{\mu}$ A Standby Current (-12)
- 12-ns propagation delay for "-12" version
- 15 -ns propagation delay for "- 15 " version

■ Unused product term disable for reduced power consumption
■ Available in Industrial operating range
$-\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-\mathrm{Vcc}=+4.5 \mathrm{~V}$ to +5.5 V
HC- and HCT-Compatible inputs and outputs

- Pin and function compatible with all 20-pin GAL devices
■ Electrically-erasable CMOS technology provides reconfigurable logic and full testability

■ Direct plug-in replacement for the PAL16R8 series and most of the PAL10H8 series

- Outputs programmable as registered or combinatorial in any combination
■ Programmable output polarity
- Programmable enable/disable control
- Preloadable output registers for testability
- Automatic register reset on power up
- Cost-effective 20-pin plastic DIP and PLCC packages
- Extensive third-party software and programmer support through FusionPLD partners
- Fully tested for $\mathbf{1 0 0 \%}$ programming and functional yields and high reliability

GENERAL DESCRIPTION

The PALCE16V8Z is an advanced PAL device built with zero-power, high-speed, electrically-erasable CMOS technology. It is functionally compatible with all 20-pin GAL devices. The macrocells provide a universal device architecture. The PALCE16V8Z will directly replace the PAL16R8 and PAL10H8 series devices, with the exception of the PAL16C1.

The PALCE16V8Z provides zero standby power and high speed. At $30-\mu \mathrm{A}$ maximum standby current, the PALCE16V8Z allows battery powered operation for an extended period.

The PALCE16V8Z utilizes the familiar sum-of-products (AND/OR) architecture that allows users to implement complex logic functions easily and efficiently. Multiple levels of combinatorial logic can always be reduced to sum-of-products form, taking advantage of the very wide input gates available in PAL devices. The equations are programmed into the device through
floating-gate cells in the AND logic array that can be erased electrically.

The fixed OR array allows up to eight data product terms per output for logic functions. The sum of these products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial with an ac-tive-high or active-low output. The output configuration is determined by two global bits and one local bit controlling four multiplexers in each macrocell.

AMD's FusionPLD program allows PALCE16V8Z designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that thirdparty tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar.

BLOCK DIAGRAM

CONNECTION DIAGRAMS

Top View

PLCC

PIN DESIGNATIONS

CLK	$=$ Clock
GND	$=$ Ground
I	$=$ Input
I / O	$=$ Input/Output
$\overline{\mathrm{OE}}$	$=$ Output Enable
VCC	$=$ Supply Voltage

ORDERING INFORMATION

Commercial and Industrial Products

AMD programmable logic products for commercial and industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
PALCE16V8Z-12	PI, JI
PALCE16V8Z-15	PI, JI,
PALCE16V8Z-25	PC, JC

Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

The PALCE16V8Z is the zero-power version of the PALCE16V8. It has all the architectural features of the PALCE16V8. In addition, the PALCE16V8Z has zero standby power and unused product term disable.

The PALCE16V8Z is a universal PAL device. It has eight independently configurable macrocells $\left(\mathrm{MC}_{0}-\mathrm{MC}_{7}\right)$. Each macrocell can be configured as registered output, combinatorial output, combinatorial I/O or dedicated input. The programming matrix implements a programmable AND logic array, which drives a fixed OR logic array. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Pins 1 and 11 serve either as array inputs or as clock (CLK) and output enable ($\overline{\mathrm{OE}}$), respectively, for all flip-flops.

Unused input pins should be tied directly to V_{cc} or GND. Product terms with all bits unprogrammed (disconnected) assume the logical HIGH state and product terms with both true and complement of any input signal connected assume a logical LOW state.

The programmable functions on the PALCE16V8Z are automatically configured from the user's design specification, which can be in a number of formats. The design specification is processed by development software to verify the design and create a programming file. This file, once downloaded to a programmer, configures the device according to the user's desired function.

The user is given two design options with the PALCE16V8Z. First, it can be programmed as a standard PAL device from the PAL16R8 and PAL10H8 series. The PAL programmer manufacturer will supply device codes for the standard PAL device architectures to be used with the PALCE16V8Z. The programmer will program the PALCE16V8Z in the corresponding architecture. This allows the user to use existing standard PAL device JEDEC files without making any changes to them. Alternatively, the device can be programmed as a PALCE16V8Z. Here the user must use the PALCE16V8Z device code. This option allows full utilization of the macrocell.

*In macrocells MCo and MC7, SG1 is replaced by $\overline{S G O}$ on the feedback multiplexer.
13061E-4

Figure 1. PALCE16V8Z Macrocell

Configuration Options

Each macrocell can be configured as one of the following: registered output, combinatorial output, combinatorial I/O, or dedicated input. In the registered output configuration, the output buffer is enabled by the $\overline{\mathrm{OE}}$ pin. In the combinatorial configuration, the buffer is either controlled by a product term or always enabled. In the dedicated input configuration, it is always disabled. With the exception of MC_{0} and MC_{7}, a macrocell configured as a dedicated input derives the input signal from an adjacent I/O. MC ${ }_{0}$ derives its input from pin $11(\overline{\mathrm{OE}})$ and MC_{7} from pin 1 (CLK).
The macrocell configurations are controlled by the configuration control word. It contains 2 global bits (SGO and SG1) and 16 local bits (SL0 0_{0} through SLO_{7} and SL10 through SL17). SG0 determines whether registers will be allowed. SG1 determines whether the PALCE16V8Z will emulate a PAL16R8 family or a PAL10H8 family device. Within each macrocell, SL0x, in conjunction with SG1, selects the configuration of the macrocell, and SL1 \times sets the output as either active low or active high for the individual macrocell.
The configuration bits work by acting as control inputs for the multiplexers in the macrocell. There are four multiplexers: a product term input, an enable select, an output select, and a feedback select multiplexer. SG1 and SLOx are the control signals for all four multiplexers. In MC_{0} and $\mathrm{MC}_{7}, \overline{\mathrm{SGO}}$ replaces SG1 on the feedback multiplexer. This accommodates CLK being the adjacent pin for MC_{7} and $\overline{\mathrm{OE}}$ the adjacent pin for MC_{0}.

Registered Output Configuration

The control bit settings are $\mathrm{SG} 0=0, \mathrm{SG} 1=1$ and $\mathrm{SL} 0 \mathrm{x}=$ 0 . There is only one registered configuration. All eight product terms are available as inputs to the OR gate. Data polarity is determined by SL1x. The flip-flop is loaded on the LOW-to-HIGH transition of CLK. The feedback path is from \bar{Q} on the register. The output buffer is enabled by $\overline{O E}$.

Combinatorial Configurations

The PALCE16V8Z has three combinatorial output configurations: dedicated output in a non-registered device, I/O in a non-registered device and I/O in a registered device.

Dedicated Output In a Non-Registered Device

The control bit settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=0$ and $\mathrm{SL} 0_{x}=$ 0 . All eight product terms are available to the OR gate. Although the macrocell is a dedicated output, the feedback is used, with the exception of MC_{3} and $\mathrm{MC}_{4} . \mathrm{MC}_{3}$ and MC_{4} do not use feedback in this mode. Because CLK and $\overline{\mathrm{OE}}$ are not used in a non-registered device, pins 1 and 11 are available as input signals. Pin 1 will use the feedback path of MC_{7} and pin 11 will use the feedback path of MC_{0}.

Combinatorial I/O In a Non-Registered Device

The control bit settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=1$, and $S L 0 x=$ 1. Only seven product terms are available to the OR gate. The eighth product term is used to enable the output buffer. The signal at the I/O pin is fed back to the AND array via the feedback multiplexer. This allows the pin to be used as an input.
Because CLK and $\overline{O E}$ are not used in a non-registered device, pins 1 and 11 are available as inputs. Pin 1 will use the feedback path of MC_{7} and pin 11 will use the feedback path of MC_{0}.

Combinatorial I/O in a Registered Device

The control bit settings are SG0 $=0, S G 1=1$ and $S L 0_{x}=$ 1. Only seven product terms are available to the OR gate. The eighth product term is used as the output enable. The feedback signal is the corresponding I/O signal.

Dedicated Input Configuration

The control bit settings are SG0 $=1, \mathrm{SG} 1=0$ and $S L 0 x=$ 1. The output buffer is disabled. Except for MC_{0} and MC_{7} the feedback signal is an adjacent I / O. For MC_{0} and MC_{7} the feedback signals are pins 1 and 11. These configurations are summarized in Table 1 and illustrated in Figure 2.

Table 1. Macrocell Configuration

SG0	SG1	SLOx	Cell Configuration	Devices Emulated
Device Uses Registers				
0	1	0	Registered Output	PAL16R8, 16R6, 16R4
0	1	1	Combinatorial I/O	PAL16R6, 16R4
Device Uses No Registers				
1	0	0	Combinatorial Output	PAL10H8, 12H6, 14H4, 16H2, 10L8, 12L6, 14L4, 16L2
1	0	1	Input	PAL12H6, 14H4, 16H2, 12L6, 14L4, 16L2
1	1	1	Combinatorial I/O	PAL16L8

Programmable Output Polarity

The polarity of each macrocell can be active-high or ac-tive-low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" efforts.

Selection is through a programmable bit SL1x which controls an exclusive-OR gate at the output of the AND/ OR logic. The output is active high if $S L 1_{x}$ is 1 and active low if $S L 1 x$ is 0 .

Registered Active Low

Combinatorial I/O Active Low

Combinatorial Output Active Low

Registered Active High

Combinatorial I/O Active High

Combinatorial Output Active High

Figure 2. Macrocell Configurations

Zero-Standby Power Mode

The PALCE16V8Z features a zero-standby power mode. When none of the inputs switch for an extended period (typically 50 ns), the PALCE16V8Z will go into standby mode, shutting down most of its internal circuitry. The current will go to almost zero (Icc $<15 \mu \mathrm{~A}$). The outputs will maintain the states held before the device went into the standby mode. There is no speed penalty associated with coming out of standby mode.

When any input switches, the internal circuitry is fully enabled and power consumption returns to normal. This feature results in considerable power savings for operation at low to medium frequencies. This savings is illustrated in the Icc vs. frequency graph.

Product-Term Disable

On a programmed PALCE16V8Z, any product terms that are not used are disabled. Power is cut off from these product terms so that they do not draw current. As shown in the Icc vs frequency graph, product-term disabling results in considerable power savings. This savings is greater at the higher frequencies.
Further hints on minimizing power consumption can be found in the Application Note, "Minimizing Power Consumption with Zero-Power PLDs".

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. Outputs of the PALCE16V8Z will depend on whether they are selected as registered or combinatorial. If registered is selected, the output will be HIGH. If combinatorial is selected, the output will be a function of the logic.

Register Preload

The register on the PALCE16V8Z can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

The preload function is not disabled by the security bit. This allows functional testing after the security bit is programmed.

Security Bit

A security bit is provided on the PALCE16V8Z as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. However, programming and verification are also defeated by the security bit. The bit can only be erased in conjunction with the array during an erase cycle.

Electronic Signature Word

An electronic signature word is provided in the PALCE16V8Z device. It consists of 64 bits of programmable memory that can contain user-defined data. The signature data is always available to the user independent of the security bit.

Programming and Erasing

The PALCE16V8Z can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its unprogrammed state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Quality and Testability

The PALCE16V8Z offers a very high level of built-in quality. The erasability if the device provides a direct means of verifying performance of all the AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to yield the highest programming yields and post-programming function yields in the industry.

Technology

The high-speed PALCE16V8Z is fabricated with AMD's advanced electrically-erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with HC and HCT devices. This technology provides strong input-clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

LOGIC DIAGRAM

$\overbrace{\text { amd }}$

LOGIC DIAGRAM (continued)

(concluded)

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to V cc +0.5 V
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Industrial (I) Devices

Operating Case
Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=6 \mathrm{~mA}$	3.84		V
			$\mathrm{l}_{\text {OH }}=20 \mu \mathrm{~A}$	V cc -0.1 V		V
Vol	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$		0.5	V
			IoL $=6 \mathrm{~mA}$		0.33	V
			$\mathrm{loL}=20 \mu \mathrm{~A}$		0.1	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Notes 1 and 2)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Notes 1 and 2)			0.9	V
IIH	Input HIGH Leakage Current	$\mathrm{VIN}=\mathrm{Vcc}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN = 0 V, Vcc = Max (Note 3)			-10	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=\text { Vcc, } \text { Vcc }_{\text {c }}=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 3) } \end{aligned}$			10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN }=\text { VIH or VIL (Note 3) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V} \quad \mathrm{Vcc}=\mathrm{Max}$ (Note 4)		-30	-150	mA
Icc	Supply Current (Static)	$\begin{aligned} & \text { Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \text { VCC }=\mathrm{Max} \end{aligned}$	$\mathrm{f}=0 \mathrm{MHz}$		30	$\mu \mathrm{A}$
	Supply Current (Dynamic)		$\mathrm{f}=15 \mathrm{MHz}$		75	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.
3. I/O pin leakage is the worst case of $I_{\text {IL }}$ and lozl (or $I_{\text {IH }}$ and $l_{\text {OZH }}$).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Condition		Typ	Unit
CIN	Input Capacitance	VIN $=2.0 \mathrm{~V}$	$\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			(Note 5) Min	Max	Unit
tpD	Input or Feedback to Combinatorial Output (Note 3)				12	ns
ts	Setup Time from Input or Feedback to Clock			8		ns
th	Hold Time			0		ns
tco	Clock to Output				8	ns
twL	Clock Width	LOW		5		ns
tw		HIGH		5		ns
$f_{\text {max }}$	Maximum Frequency (Notes 4 and 6)	External Feedback	1/(ts + tco)	62.5		MHz
		Internal Feedback (fCNT)	1/(ts + tcF)	77		MHz
		No Feedback	1/(twh + twL)	100		MHz
tpzx	OE to Output Enable				8	ns
tpxz	$\overline{\text { OE }}$ to Output Disable				8	ns
tEA	Input to Output Enable Using Product Term Control				13	ns
ter	Input to Output Disable Using Product Term Control				13	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. This parameter is tested in standby mode.
4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.
5. Output delay minimum for $t_{P D}, t_{C O}, t_{P Z D}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
6. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation:
$t_{C F}=1 / /_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS	
Storage Temper	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature	
Supply Voltage with	
Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$	
DC Output or I/O	
Pin Voltage	
Static Discharge Voltage	
Latchup Current	
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$) 100 mA	
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.	

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.75 V to +5.25 V
Industrial (I) Devices
Operating Case
Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground
+4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\text {OH }}=6 \mathrm{~mA}$	3.84		V
			$\mathrm{I}_{\text {OH }}=20 \mu \mathrm{~A}$	$\mathrm{Vcc}-0.1 \mathrm{~V}$		V
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{loL}=24 \mathrm{~mA}$		0.5	V
			loL $=6 \mathrm{~mA}$		0.33	V
			loL $=20 \mu \mathrm{~A}$		0.1	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Notes 1 and 2)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Notes 1 and 2)			0.9	V
IIH	Input HIGH Leakage Current	VIN = Vcc, Vcc = Max (Note 3)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN = 0 V, Vcc = Max (Note 3)			-10	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = Vcc, Vcc = Max } \\ & \text { VIN = VIH or VIL (Note 3) } \end{aligned}$			10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN }=\text { VIH or VIL (Note 3) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V} \quad \mathrm{Vcc}=\mathrm{Max}$ (Note 4)		-30	-150	mA
Icc	Supply Current (Static)	$\begin{aligned} & \text { Outputs Open (lout = } 0 \mathrm{~mA} \text {) } \\ & \text { Vcc = Max } \end{aligned}$	$\mathrm{f}=0 \mathrm{MHz}$		15	$\mu \mathrm{A}$
	Supply Current (Dynamic)		$\mathrm{f}=25 \mathrm{MHz}$		75	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.
3. I/O pin leakage is the worst case of IIL and lozl (or IIH and IOzH).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. $V_{\text {Out }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Condition		Typ	Unit
CIN	Input Capacitance	VIN $=2.0 \mathrm{~V}$	$\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

 (Note 2)| Parameter Symbol | Parameter Description | | | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tpD | Input or Feedback to Combinatorial Output | | | | 15 | ns |
| ts | Setup Time from Input or Feedback to Clock | | | 10 | | ns |
| th | Hold Time | | | 0 | | ns |
| tco | Clock to Output | | | | 10 | ns |
| twL | Clock Width | LOW | | 8 | | ns |
| twh | | HIGH | | 8 | | ns |
| fmax | Maximum Frequency (Notes 3 and 4) | External Feedback | 1/(ts + tco) | 50 | | MHz |
| | | Internal Feedback (fcnt) | 1/(ts + tcF) | 58.8 | | MHz |
| | | No Feedback | 1/(twh + twL) | 62.5 | | MHz |
| tPzX | OE to Output Enable | | | | 15 | ns |
| tpxz | $\overline{\text { OE }}$ to Output Disable | | | | 15 | ns |
| tEA | Input to Output Enable Using Product Term Control | | | | 15 | ns |
| ter | Input to Output Disable Using Product Term Control | | | | 15 | ns |

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to V cc +0.5 V
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage 2001 V
Latchup Current

$$
\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C}\right) \ldots \ldots
$$

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Supply Voltage (Vcc) with
Respect to Ground +4.75 V to +5.25 V
Industrial (I) Devices
Operating Case
Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{aligned} & \mathrm{VIN}=\mathrm{V} \text { IH or } \mathrm{VIL} \\ & \mathrm{~V} C \mathrm{M}=\mathrm{Min} \end{aligned}$	$\mathrm{IOH}=6 \mathrm{~mA}$	3.84		V
			$\mathrm{l}_{\text {OH }}=20 \mu \mathrm{~A}$	V cc -0.1 V		V
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{loL}=24 \mathrm{~mA}$		0.5	V
			$\mathrm{loL}=6 \mathrm{~mA}$		0.33	V
			$\mathrm{loL}=20 \mu \mathrm{~A}$		0.1	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Notes 1 and 2)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Notes 1 and 2)			0.9	V
IIH	Input HIGH Leakage Current	Vin = Vcc, $\mathrm{Vcc}_{\text {c }}=\mathrm{Max}$ (Note 3)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)			-10	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = Vcc, Vcc = Max } \\ & \text { VIN = VIH or VIL (Note 3) } \end{aligned}$			10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 3) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V} \quad \mathrm{Vcc}=\mathrm{Max}$ (Note 4)		-30	-150	mA
Icc	Supply Current	$\begin{aligned} & \text { Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \text { VCC }=\mathrm{Max} \end{aligned}$	$\mathrm{f}=0 \mathrm{MHz}$		15	$\mu \mathrm{A}$
			$\mathrm{f}=25 \mathrm{MHz}$		90	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.
3. I/O pin leakage is the worst case of $I_{I L}$ and $I_{\text {OZL }}$ (or IIH and IOZH).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Condition		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			Min	Max	Unit
tPD	Input or Feedback to Combinatorial Output (Note 3)				25	ns
ts	Setup Time from Input or Feedback to Clock			20		ns
th	Hold Time			0		ns
tco	Clock to Output				10	ns
twL	Clock Width	LOW		8		ns
twh		HIGH		8		ns
fmax	Maximum Frequency (Notes 4 and 5)	External Feedback	1/(ts + tco)	33.3		MHz
		Internal Feedback (fCNT)	1/(ts + tcF)	50		MHz
		No Feedback	1/(ts +th)	50		MHz
tpzx	$\overline{\text { OE }}$ to Output Enable				25	ns
tpxz	$\overline{\text { OE to Output Disable }}$				25	ns
teA	Input to Output Enable Using Product Term Control				25	ns
ter	Input to Output Disable Using Product Term Control				25	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. This parameter is tested in Standby Mode. When the device is not in Standby Mode, the tpD will typically be 2 ns faster.
4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.
5. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

$\overline{O E}$ to Output Disable/Enable

Notes:

1. $V_{T}=1.5 \mathrm{~V}$ for input signals and $V c c / 2$ for output signals.
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times 2 ns -5 ns typical.

KEY TO SWITCHING WAVEFORMS
\(\left.\left.$$
\begin{array}{lll|}\hline \text { WAVEFORM } & \text { INPUTS } & \text { OUTPUTS } \\
& \begin{array}{l}\text { Must be } \\
\text { Steady }\end{array} & \begin{array}{l}\text { Will be } \\
\text { Steady }\end{array} \\
\text { May } \\
\text { Change } \\
\text { from H to L }\end{array}
$$ \quad $$
\begin{array}{l}\text { Will be } \\
\text { Changing } \\
\text { from H to L }\end{array}
$$\right\} $$
\begin{array}{l}\text { May } \\
\text { Change } \\
\text { from L to H }\end{array}
$$ \quad \begin{array}{l}Will be

Changing

from L to H\end{array}\right\}\)| Don't Care, |
| :--- |
| Any Change |
| Permitted |\quad| Changing, |
| :--- |
| State |
| Unknown |

SWITCHING TEST CIRCUIT

Specification	S_{1}	S2	CL	R1	R2	Measured Output Value
tpd, tco	Closed	Closed	30 pF	820Ω	820Ω	$\mathrm{V}_{\mathrm{cc}} / 2$
tpzx, tEA	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Open } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Closed } \end{aligned}$	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Closed } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Open } \end{aligned}$				$\mathrm{V}_{\mathrm{cc}} / 2$
tpxz, ter	$\mathrm{H} \rightarrow$ Z: Open L \rightarrow Z: Closed	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z} \text { : Closed } \\ & \mathrm{L} \rightarrow \mathrm{Z} \text { : Open } \end{aligned}$	5 pF			$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{VoL}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS FOR THE PALCE16V8Z-12/15

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

13061E-13

Icc vs. Frequency
Graph for the PALCE16V8Z-12/15

The selected "typical" pattern utilized 50\% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching
By utilizing 50\% of the device, a midpoint is defined for Icc. From this midpoint, a designer may scale the Icc graphs up or down to estimate the Icc requirements for a particular design.

TYPICAL Icc CHARACTERISTICS FOR THE PALCE16V8Z-25

$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

13061E-14

Icc vs. Frequency
Graph for the PALCE16V8Z-25

The selected "typical" pattern utilized 50% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching
By utilizing 50\% of the device, a midpoint is defined for Icc. From this midpoint, a designer may scale the Icc graphs up or down to estimate the Icc requirements for a particular design.

ENDURANCE CHARACTERISTICS

The PALCE16V8Z is manufactured using AMD's advanced Electrically Erasable process. This technology
uses an EE cell to replace the fuse link used in bipolar parts. As a result, the device can be erased and reprogrammed - a feature which allows 100\% testing at the factory.

Endurance Characteristics

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

ROBUSTNESS FEATURES

The PALCE16V8Z has some unique features that make it extremely robust, especially when operating in highspeed design environments. Input clamping circuitry
limits negative overshoot, eliminating the possibility of false clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse width of less than about 100 ns

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typical Output
13061E-16

POWER-UP RESET

The PALCE16V8Z has been designed with the capability to reset during system power-up. Following powerup, all flip-flops will be reset to LOW. The output state will be HIGH independent of the logic polarity. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset
and the wide range of ways $V_{c c}$ can rise to its steady state, two conditions are required to insure a valid power-up reset. These conditions are:

- The V_{cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Descriptions	Min	Max	Unit
tPR	Power-Up Reset Time		1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics		
twL	Clock Width LOW			

TYPICAL THERMAL CHARACTERISTICS

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.
PALCE16V8Z-25

Parameter Symbol	Parameter Description				Unit
			PDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		20	19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja}	Thermal impedance, junction to ambient		65	57	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Өjma	Thermal impedance, junction to ambient with air flow	200 Ifpm air	58	41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	51	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	47	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	44	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic өjc Considerations

The data listed for plastic $\theta j c$ are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the $\theta j \mathrm{c}$ measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, θj c tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

PALCE20V8 Family

EE CMOS 24-Pin Universal Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- Pin and function compatible with all GAL 20V8/As
- Electrically erasable CMOS technology provides reconfigurable logic and full testability
- High-speed CMOS technology
- 5 -ns propagation delay for "-5" version
- 7.5 -ns propagation delay for " -7 " version
- Direct plug-in replacement for a wide range of 24-pin PAL devices
- Programmable enable/disable control
- Outputs individually programmable as registered or combinatorial

■ Peripheral Component Interconnect (PCI) compliant
■ Preloadable output registers for testability

- Automatic register reset on power-up
- Cost-effective 24-pin plastic SKINNYDIP and 28-pin PLCC packages
- Extensive third-party software and programmer support through FusionPLD partners
- Fully tested for $\mathbf{1 0 0 \%}$ programming and functional yields and high reliability
- Programmable output polarity
- 5-ns version utilizes a split leadframe for improved performance

GENERAL DESCRIPTION

The PALCE20V8 is an advanced PAL device built with low-power, high-speed, electrically-erasable CMOS technology. Its macrocells provide a universal device architecture. The PALCE20V8 is fully compatible with the GAL20V8 and can directly replace PAL20R8 series devices and most 24-pin combinatorial PAL devices.
Device logic is automatically configured according to the user's design specification. A design is implemented using any of a number of popular design software packages, allowing automatic creation of a programming file based on Boolean or state equations. Design software also verifies the design and can provide test vectors for the finished device. Programming can be accomplished on standard PAL device programmers.
The PALCE20V8 utilizes the familiar sum-of-products (AND/OR) architecture that allows users to implement
complex logic functions easily and efficiently. Multiple levels of combinatorial logic can always be reduced to sum-of-products form, taking advantage of the very wide input gates available in PAL devices. The equations are programmed into the device through floatinggate cells in the AND logic array that can be erased electrically.
The fixed OR array allows up to eight data product terms per output for logic functions. The sum of these products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial with an active-high or active-low output. The output configuration is determined by two global bits and one local bit controlling four multiplexers in each macrocell.

[^0]CONNECTION DIAGRAMS

(Top View)

SKINNYDIP

PLCC/LCC

Note:

Pin 1 is marked for orientation.

PIN DESIGNATIONS

CLK = Clock
GND = Ground
I = Input
I/O = Input/Output
NC = No Connect
$\overline{\mathrm{OE}}=$ Output Enable
Vcc = Supply Voltage

ORDERING INFORMATION

Commercial and Industrial Products

AMD programmable logic products for commercial and industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations		
PALCE20V8H-5	JC	/5
PALCE20V8H-7	PC, JC	15
PALCE20V8H-10		Blank, /4
PALCE20V8Q-10		/5
PALCE20V8H-15	PC, JC, PI, JI	Blank, /4
PALCE20V8Q-15	PC, JC	
PALCE20V8Q-20	Pl, JI	
PALCE20V8H-25	PC, JC, PI, JI	
PALCE20V8Q-25		

Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

The PALCE20V8 is a universal PAL device. It has eight independently configurable macrocells ($\mathrm{MC}_{0} . \mathrm{MC}_{7}$). Each macrocell can be configured as a registered output, combinatorial output, combinatorial I/O, or dedicated input. The programming matrix implements a programmable AND logic array, which drives a fixed OR logic array. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Pins 1 and 13 serve either as array inputs or as clock (CLK) and output enable ($\overline{\mathrm{OE}}$) for all flip-flops.
Unused input pins should be tied directly to V_{cc} or GND. Product terms with all bits unprogrammed (disconnected) assume the logical HIGH state and product terms with both true and complement of any input signal connected assume a logical LOW state.
The programmable functions on the PALCE20V8 are automatically configured from the user's design specification, which can be in a number of formats. The design
specification is processed by development software to verify the design and create a programming file. This file, once downloaded to a programmer, configures the device according to the user's desired function.
The user is given two design options with the PALCE20V8. First, it can be programmed as an emulated PAL device. This includes the PAL20R8 series and most 24 -pin combinatorial PAL devices. The PAL device programmer manufacturer will supply device codes for the standard PAL architectures to be used with the PALCE20V8. The programmer will program the PALCE20V8 to the corresponding PAL device architecture. This allows the user to use existing standard PAL device JEDEC files without making any changes to them. Alternatively, the device can be programmed directly as a PALCE20V8. Here the user must use the PALCE20V8 device code. This option provides full utilization of the macrocells, allowing non-standard architectures to be built.

Figure 1. PALCE20V8 Macrocell

Configuration Options

Each macrocell can be configured as one of the following: registered output, combinatorial output, combinatorial I/O or dedicated input. In the registered output configuration, the output buffer is enabled by the $\overline{O E}$ pin. In the combinatorial configuration, the buffer is either controlled by a product term or always enabled. In the dedicated input configuration, the buffer is always disabled. A macrocell configured as a dedicated input derives the input signal from an adjacent I/O.
The macrocell configurations are controlled by the configuration control word. It contains 2 global bits (SGO and SG1) and 16 local bits (SLOo through SLO7 and SL10 through SL17). SG0 determines whether registers will be allowed. SG1 determines whether the PALCE20V8 will emulate a PAL20R8 family or a combinatorial device. Within each macrocell, SL0x, in conjunction with SG1, selects the configuration of the macrocell and SL1 $1 \times$ sets the output as either active low or active high.

The configuration bits work by acting as control inputs for the multiplexers in the macrocell. There are four multiplexers: a product term input, an enable select, an output select, and a feedback select multiplexer. SG1 and SLOx are the control signals for all four multiplexers. In $M C_{0}$ and $M C_{7}, \overline{\text { SG0 }}$ replaces SG1 on the feedback multiplexer.

These configurations are summarized in table 1 and illustrated in figure 2.
If the PALCE20V8 is configured as a combinatorial device, the CLK and OE pins may be available as inputs to the array. If the device is configured with registers, the CLK and $\overline{O E}$ pins cannot be used as data inputs.

Registered Output Configuration

The control bit settings are $\mathrm{SG} 0=0, \mathrm{SG} 1=1$ and $\mathrm{SL} 0 \mathrm{x}=$ 0 . There is only one registered configuration. All eight product terms are available as inputs to the OR gate. Data polarity is determined by SL1x. SL1x is an input to the exclusive-OR gate which is the D input to the flipflop. SL1x is programmed as 1 for inverted output or 0 for non-inverted output. The flip-flop is loaded on the LOW-to-HIGH transition of CLK. The feedback path is from \bar{Q} on the register. The output buffer is enabled by OE.

Combinatorial Configurations

The PALCE20V8 has three combinatorial output configurations: dedicated output in a non-registered device, I / O in a non-registered device and I/O in a registered device.

Dedicated Output in a Non-Registered Device

The control settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=0$, and $\mathrm{SLO} 0_{x}=0$. All eight product terms are available to the OR gate. Although the macrocell is a dedicated output, the feedback is used, with the exception of pins 18(21) and 19(23). Pins 18(21) and 19(23) do not use feedback in this mode.

Dedicated Input in a Non-Registered Device

The control bit settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=0$ and $\mathrm{SLO} 0 \mathrm{x}=$ 1. The output buffer is disabled. The feedback signal is an adjacent I/O pin.

Combinatorial I/O in a Non-Registered Device

The control settings are $\mathrm{SG} 0=1, \mathrm{SG} 1=1$, and $\mathrm{SLO}_{\mathrm{x}}=1$. Only seven product terms are available to the OR gate. The eighth product term is used to enable the output buffer. The signal at the I/O pin is fed back to the AND array via the feedback multiplexer. This allows the pin to be used as an input.

Combinatorial I/O in a Registered Device

The control bit settings are $\mathrm{SG} 0=0, \mathrm{SG} 1=1$ and $\mathrm{SL} 0_{x}=1$. Only seven product terms are available to the OR gate. The eighth product term is used as the output enable. The feedback signal is the corresponding I/O signal.

Table 1. Macrocell Configurations

SG0 SG1 SL0x	Cell Configuration	Devices Emulated		
Device has registers				
0	1	0	Registered Output	PAL20R8, 20R6, 20R4
0	1	1	Combinatorial I/O	PAL20R6, 20R4
			Device has no registers	
1	0	0	Combinatorial Output	PAL20L2, 18L4,16L6,14L8
1	0	1	Dedicated Input	PAL20L2,18L4, 16L6
1	1	1	Combinatorial I/O	PAL20L8

Programmable Output Polarity

The polarity of each macrocell output can be active high or active low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" efforts.

Selection is made through a programmable bit SL1x which controls an exclusive-OR gate at the output of the AND/OR logic. The output is active high if $\mathrm{SL} 1_{x}$ is a 0 and active low if $S L 1_{x}$ is a 1 .

Registered Active Low

Combinatorial I/O Active Low

Combinatorial Output Active Low

Registered Active High

Combinatorial I/O Active High

Combinatorial Output Active High

Figure 2. Macrocell Configurations

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. Outputs of the PALCE20V8 depend on whether they are selected as registered or combinatorial. If registered is selected, the output will be HIGH. If combinatorial is selected, the output will be a function of the logic.

Register Preload

The register on the PALCE20V8 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Bit

A security bit is provided on the PALCE20V8 as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback and verification of the programmed pattern by a device programmer, securing proprietary designs from competitors. The bit can only be erased in conjunction with the array during an erase cycle.

Electronic Signature Word

An electronic signature word is provided in the PALCE20V8. It consists of 64 bits of programmable memory that can contain any user-defined data. The signature data is always available to the user independent of the security bit.

Programming and Erasing

The PALCE20V8 can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Quality and Testability

The PALCE20V8 offers a very high level of built-in quality. The erasability of the device provides a direct means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming and post-programming functional yields in the industry.

Technology

The high-speed PALCE20V8H is fabricated with AMD's advanced electrically erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

PCI Compliance

The PALCE20V8H-7/10 is fully compliant with the PCl Local Bus Specification published by the PCI Special Interest Group. The PALCE20V8H-7/10's predictable timing ensures compliance with the PCI AC specifications independent of the design. On the other hand, in CPLD and FPGA architectures without predictable timing, PCI compliance is dependent upon routing and product term distribution.

LOGIC DIAGRAM
 SKINNYDIP (PLCC and LCC) Pinouts

16491D-6

LOGIC DIAGRAM (continued) SKINNYDIP (PLCC and LCC) Pinouts

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage
-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$) 100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Temperature (T_{A}) Operating
in Free Air
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{aligned} & \mathrm{IOH}=-3.2 \mathrm{~mA} \quad \text { VIN }=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V} \mathrm{CC}=\mathrm{Min} \end{aligned}$	2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & \mathrm{IOL}=24 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Min } \end{aligned}$		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN = 5.25 V, Vcc = Max (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = } 5.25 \mathrm{~V}, \text { VcC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VcC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-150	mA
Icc (Static)	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$), V IN $=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		125	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T} A=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\begin{array}{\|c\|} \operatorname{Min} \\ (\text { Note 5) } \end{array}$	Max	Unit
tpD	Input or Feedback to Combinatorial Output			1	5	ns
ts	Setup Time from Input or Feedback to Clock			3		ns
th	Hold Time			0		ns
tco	Clock to Output			1	4	ns
tskewr	Skew Between Registered Outputs (Note 4)				1	ns
twL	Clock Width	LOW		3		ns
twh		HIGH		3		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	142.8		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 6)	166		MHz
		No Feedback	1/(twh + twL)	166		MHz
tPzX	$\overline{\mathrm{OE}}$ to Output Enable			1	6	ns
tPXZ	$\overline{\text { OE }}$ to Output Disable			1	5	ns
tEA	Input to Output Enable Using Product Term Control			2	6	ns
ter	Input to Output Disable Using Product Term Control			2	5	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Skew testing takes into account pattern and switching direction differences between outputs that have equal loading.
5. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z X}, t_{P X Z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
6. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / /_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage \qquad -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$) . 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air \qquad
Supply Voltage ($\mathrm{V}_{c c}$) with
Respect to Ground
+4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} & \end{array}$	2.4		V
VoL	Output LOW Voltage	$\begin{array}{ll} \hline \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} & \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	$\mathrm{VIN}=5.25 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \mathrm{~V}, \text { Vcc }=\mathrm{Max} \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VcC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)	-30	-150	mA
Icc (Dynamic)	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) $V_{c c}=\operatorname{Max}, \mathrm{f}=25 \mathrm{MHz}$		115	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of $I_{I L}$ and lozL (or $I_{\mathbb{H}}$ and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. $V_{\text {out }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Descriptions	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}$ $\mathrm{~A}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1 \mathrm{MHz}$	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$		8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			Min	Max	Unit
tpD	Input or Feedback to Combinatorial Output		8 Outputs Switching	3	7.5	ns
			1 Output Switching	3	7	ns
ts	Setup Time from Input or Feedback to Clock			5		ns
th	Hold Time			0		ns
tco	Clock to Output			1	5	ns
tSKEWR	Skew Between Registered Outputs (Note 4)				1	ns
twL	Clock Width	LOW		4		ns
twh		HIGH		4		ns
$f_{\text {max }}$	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	100		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 6)	125		MHz
		No Feedback	1/(twh + twL)	125		MHz
tPZX	$\overline{\text { OE }}$ to Output Enable			1	6	ns
tpxz	$\overline{\text { OE }}$ to Output Disable			1	6	ns
teA	Input to Output Enable Using Product Term Control			3	9	ns
ter	Input to Output Disable Using Product Term Control			3	9	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Skew testing takes into account pattern and switching direction differences between outputs that have equal loading.
5. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z x}, t_{P X z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
6. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage \qquad -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$) . 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air
age ($V_{C c}$) with
Supply Voltage (Vcc) with
Respect to Ground
+4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{IOH}=-3.2 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} & \end{array}$		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN $=5.25 \mathrm{~V}, \mathrm{VcC}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{VCC}=\operatorname{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \text { V, Vcc }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { VoUT = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)	-30	-150	mA
Icc (Dynamic)	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) $V_{c c}=\operatorname{Max}, \mathrm{f}=25 \mathrm{MHz}$		115	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of $I_{I L}$ and $l_{\text {OZL }}$ (or $I_{I H}$ and $I_{O Z H}$).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{~V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\begin{array}{\|c\|} \hline \text { Min } \\ \text { (Note 4) } \end{array}$	Max	Unit
tPD	Input or Feedback to Combinatorial Output			3	10	ns
ts	Setup Time from Input or Feedback to Clock			7.5		ns
th	Hold Time			0		ns
tco	Clock to Output			3	7.5	ns
twL	Clock Width	LOW		6		ns
twh		HIGH		6		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	66.7		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 5)	71.4		MHz
		No Feedback	1/(twh + twL)	83.3		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable			2	10	ns
tpXZ	$\overline{\text { OE }}$ to Output Disable			2	10	ns
tea	Input to Output Enable Using Product Term Control			3	10	ns
ter	Input to Output Disable Using Product Term Control			3	10	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z x}, t_{P X z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
5. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / /_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage \qquad -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$) . 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}) Operating
in Free Air \qquad
Supply Voltage ($\mathrm{V}_{c c}$) with
Respect to Ground
+4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} & \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & \text { IOL }=24 \mathrm{~mA} \\ & \mathrm{VCC}=\mathrm{VIN}=\mathrm{VI} \mathrm{IH} \text { or } \mathrm{VIL} \\ & \end{aligned}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN = 5.25 V, Vcc = Max (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = 5.25 V, VcC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)	-30	-150	mA
Icc (Dynamic)	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) VCC $=$ Max, $\mathrm{f}=15 \mathrm{MHz}$ (Note 4)		55	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of $I_{I L}$ and $l_{\text {OZL }}$ (or $I_{I H}$ and $I_{O Z H}$).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. This parameter is guaranteed worst case under test conditions. Refer to the Icc vs. frequency graph for typical measurements.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			$\begin{array}{\|c\|} \hline \text { Min } \\ \text { (Note 4) } \end{array}$	Max	Unit
tPD	Input or Feedback to Combinatorial Output			3	10	ns
ts	Setup Time from Input or Feedback to Clock			7.5		ns
th	Hold Time			0		ns
tco	Clock to Output			3	7.5	ns
twL	Clock Width	LOW		6		ns
twh		HIGH		6		ns
$f_{\text {max }}$	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	66.7		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 5)	71.4		MHz
		No Feedback	1/(twh + twL)	83.3		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable			2	10	ns
tpxz	$\overline{\text { OE to Output Disable }}$			2	10	ns
tEA	Input to Output Enable Using Product Term Control			3	10	ns
ter	Input to Output Disable Using Product Term Control			3	10	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z x}, t_{P X z}, t_{E A}$, and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values therefore, minimum values are recommended for simulation purposes only.
5. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{cc}+0.5 \mathrm{~V}$
DC Output or
I/O Pin Voltage \qquad
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) . 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliabiity. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Temperature (T_{A}) Operating
in Free Air . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
V OH	Output HIGH Voltage	$\begin{aligned} & \mathrm{IOH}=-3.2 \mathrm{~mA} \quad \mathrm{VIN}=\mathrm{V} \mathrm{IH} \text { or } \mathrm{VIL} \\ & \mathrm{~V} \text { CC }=\mathrm{Min} \end{aligned}$		2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & \text { IoL }=24 \mathrm{~mA} \quad \text { VIN }=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$			0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
IH	Input HIGH Leakage Current	V IN $=5.25 \mathrm{~V}, \mathrm{VcC}=\mathrm{Max}$ (Note 2)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max}$ (Note 2)			-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.25 \mathrm{~V}, \text { VCC }=\text { Max } \\ & \text { VIN } \left.=\text { VIH or } \text { VIL }^{(\text {Note 2 }}\right) \end{aligned}$			10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$			-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 3)		-30	-150	mA
Icc	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$	H		90	A
			Q		55	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozl (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. $V_{\text {Out }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	Typ	Unit	
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-15		-25		Unit
				Min	Max	Min	Max	
tpD	Input or Feedback to Combinatorial Output				15		25	ns
ts	Setup Time from Input or Feedback to Clock			12		15		ns
th	Hold Time			0		0		ns
tco	Clock to Output				10		12	ns
twL	Clock Width	LOW		8		12		ns
twh		HIGH		8		12		ns
$\mathrm{f}_{\text {max }}$	Maximum Frequency (Note 3)	External Feedback	1/(ts $+\mathrm{tco}^{\text {c }}$	45.5		37		MHz
		Internal Feedback (fCNT)	$1 /\left(t_{s}+t_{\text {cF }}\right)($ Note 4)	50		40		MHz
		No Feedback	1/(twh + twL)	62.5		41.6		MHz
tpzx	$\overline{\text { OE }}$ to Output Enable				15		20	ns
tpxZ	$\overline{\text { OE }}$ to Output Disable				15		20	ns
teA	Input to Output Enable Using Product Term Control				15		25	ns
ter	Input to Output Disable Using Product Term Control				15		25	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} c \mathrm{c}+0.5 \mathrm{~V}$
DC Output or
I/O Pin Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Industrial (I) Devices
Temperature (T_{A}) Operating
in Free Air . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Voh	Output HIGH Voltage	$\begin{aligned} & \mathrm{IOH}=-3.2 \mathrm{~mA} \quad \mathrm{VIN}=\mathrm{V} \text { IH or } \mathrm{V} \mathrm{IL} \\ & \mathrm{~V} \mathrm{CC}=\mathrm{Min} \end{aligned}$		2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & \text { IOL }=24 \mathrm{~mA} \quad \text { VIN }=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$			0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
IIH	Input HIGH Leakage Current	VIN = 5.5 V, Vcc = Max (Note 2)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max}$ (Note 2)			-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { VOUT }=5.5 \text { V, VCC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL }(\text { Note } 2) \end{aligned}$			10	$\mu \mathrm{A}$
Iozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { VOUT = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$			-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)		-30	-150	mA
Icc	Supply Current	Outputs Open (lout $=0 \mathrm{~mA}$) $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$	H		130	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of $I_{I L}$ and lozL (or IIH and lozH).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-15		-20		-25		Unit
				Min	Max	Min	Max	Min	Max	
tpD	Input or Feedback to Combinatorial Output				15		20		25	ns
ts	Setup Time from Input or Feedback to Clock			12		13		15		ns
th	Hold Time			0		0		0		ns
tco	Clock to Output				10		11		12	ns
twL	Clock Width	LOW		8		10		12		ns
twh		HIGH		8		10		12		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	45.5		41.6		37		MHz
		Internal Feedback (fCNT)	$1 /(\mathrm{ts}+\mathrm{tcF})$ (Note 4)	50		45.4		40		MHz
		No Feedback	1/(twh + twL)	62.5		50.0		41.6		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable				15		18		20	ns
tPXZ	$\overline{\mathrm{OE}}$ to Output Disable				15		18		20	ns
tEA	Input to Output Enable Using Product Term Control				15		18		20	ns
ter	Input to Output Disable Using Product Term Control				15		18		20	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

$\overline{O E}$ to Output Disable/Enable

Notes:

1. $V_{T}=1.5 \mathrm{~V}$
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times $2 n s-5 n s$ typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be
		Steady
	May Change from H to L	Will be Changing from H to L
171	May	Will be
11	Change from L to H	Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is High- Impedance "Off" State

SWITCHING TEST CIRCUIT

Switching Test Circuit
16491D-12

Specification	S1	CL	Commercial		Measured Output Value
			R1	R2	
tpd, tco	Closed	50 pF	200Ω	390Ω	1.5 V
tpzx, tEA	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Open } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Closed } \end{aligned}$				1.5 V
tpxz, ter	$\mathrm{H} \rightarrow \mathrm{Z}$: Open L \rightarrow Z: Closed	5 pF		$\begin{gathered} \mathrm{H}-5: \\ 200 \Omega \end{gathered}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{VoL}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Icc vs. Frequency

The selected "typical" pattern utilized 50\% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching.

By utilizing 50\% of the device, a midpoint is defined for Icc. From this midpoint, a designer may scale the Icc graphs up or down to estimate the Icc requirements for a particular design.

ENDURANCE CHARACTERISTICS

The PALCE20V8 is manufactured using AMD's advanced electrically erasable process. This technology
uses an EE cell to replace the fuse link used in bipolar parts. As a result, the device can be erased and reprogrammed-a feature which allows 100% testing at the factory.

Endurance Characteristics

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

ROBUSTNESS FEATURES

The PALCE20V8X-X/5 have some unique features that make them extremely robust, especially when operating in high-speed design environments. Pull-up resistors on inputs and I/O pins cause unconnected pins to default to a known state. Input clamping circuitry limits negative overshoot, eliminating the possibility of false clocking
caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse width of less than about 100 ns for the $/ 5$ versions.

Selected / 4 devices are also being retrofitted with these robustness features. See the chart below for device listings.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR SELECTED /5 VERSION AND SELECTED /4 VERSIONS*

Typical Input

Typical Output

Device	Rev Letter
PALCE20V8H-10	K
PALCE20V8H-15	K, J
PALCE20V8Q-15	J
PALCE20V8H-25	J
PALCE20V8Q-25	J

Topside Marking:
AMD CMOS PLDs are marked on top of the package in the following manner:

PALCEXXXX
Datecode (3 numbers) Lot ID (4 characters)- -(Rev Letter)
The Lot ID and Rev Letter are separated by two spaces.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR SELECTED /5 VERSIONS*

I/O
16491D-15

Device	Rev Letter
PALCE20V8H-10	L
PALCE20V8H-15	L, M
PALCE20V8Q-15	M
PALCE20V8H-25	M
PALCE20V8Q-25	M

Topside Marking:
AMD CMOS PLDs are marked on top of the package in the following manner:

PALCEXXX
Datecode (3 numbers) Lot ID (4 characters)- -(Rev Letter)
The Lot ID and Rev Letter are separated by two spaces.

POWER-UP RESET

The PALCE20V8 has been designed with the capability to reset during system power-up. Following power-up, all flip-flops will be reset to LOW. The output state will be HIGH independent of the logic polarity. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below.

Due to the synchronous operation of the power-up reset and the wide range of ways $V_{c c}$ can rise to its steady state, two conditions are required to insure a valid power-up reset. These conditions are:
■ The V_{cc} rise must be monotonic.

- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Min	Max	Unit
tPR	Power-Up Reset Time		1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics		
twL	Clock Width LOW			

Power-Up Reset Waveforms

TYPICAL THERMAL CHARACTERISTICS

/4 Devices (PALCE20V8H-10/4)

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description				Unit
			SKINNYDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		19	19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{ja}$	Thermal impedance, junction to ambient		73	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ jima	Thermal impedance, junction to ambient with air flow	200 lfpm air	61	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	53	41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	50	38	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	47	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$

/5 Devices (PALCE20V8H-7/5)

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description				Unit
			SKINNYDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		18	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{ja}$	Thermal impedance, junction to ambient		69	51	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jma }}$	Thermal impedance, junction to ambient with air flow	200 Ifpm air	60	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	54	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	50	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	X	X	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic Өjc Considerations

The data listed for plastic $\theta j c$ are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the 日jc measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, θj ctests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

PALCE22V10Z Family

DISTINCTIVE CHARACTERISTICS

- Zero-power CMOS technology
- $30 \mu \mathrm{~A}$ standby current
- As fast as 15 ns first-access propagation delay and 50 MHz fmax (external)
Unused product term disable for reduced power consumption
- Available in Industrial operating range at 15 ns tpD
- $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-\mathrm{V}_{\mathrm{cc}}=+4.5 \mathrm{~V}$ to +5.5 V
- HC- and HCT-compatible inputs and outputs
- Electrically-erasable technology provides reconfigurable logic and full testability
- 10 macrocells programmable as registered or combinatorial, and active high or active low to match application needs
- Varied product term distribution allows up to 16 product terms per output for complex functions
- Global asynchronous reset and synchronous preset for initialization
- Power-up reset for initialization and register preload for testability
- Extensive third-party software and programmer support through FusionPLD partners
- 24-pin SKINNYDIP, 28-pin PLCC, and 24-pin SOIC packages save space

GENERAL DESCRIPTION

The PALCE22V10Z is an advanced PAL device built with zero-power, high-speed, electrically-erasable CMOS technology. It provides user-programmable logic for replacing conventional zero-power CMOS SSI/MSI gates and flip-flops at a reduced chip count.

The PALCE22V10Z provides zero standby power and high speed. At $30 \mu \mathrm{~A}$ maximum standby current, the PALCE22V10Z allows battery powered operation for an extended period.

The ZPAL ${ }^{\text {TM }}$ device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.

The product terms are connected to the fixed OR array with a varied distribution from 8 to 16 across the outputs (see Block Diagram). The OR sum of the products feeds
the output macrocell. Each macrocell can be programmed as registered or combinatorial, and active high or active low. The output configuration is determined by two bits controlling two multiplexers in each macrocell.

AMD's FusionPLD program allows PALCE22V10Z designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that thirdparty tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar. Please refer to the Software Reference Guide to PLD Compliers for certified development systems, and the Programmer Reference Guide for approved programmers.

BLOCK DIAGRAM

15700E-1

CONNECTION DIAGRAMS
Top View

SKINNYDIP/SOIC

15700E-2

15700E-3

Note:

Pin 1 is marked for orientation.

PIN DESCRIPTION

```
CLK = Clock
GND = Ground
| = Input
I/O = Input/Output
NC = No Connect
Vcc = Supply Voltage
```


ORDERING INFORMATION

Commercial and Industrial Products

AMD programmable logic products for commercial and industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of these elements:

Valid Combinations	
PALCE22V10Z-15	PI, JI
PALCE22V10Z-25	PC, JC, SC,
	PI, JI, SI

Valid Combinations
Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

The PALCE22V10Z is the zero-power version of the PALCE22V10. It has all the architectural features of the PALCE22V10. In addition, the PALCE22V10Z has zero standby power and unused product term disable.

The PALCE22V10Z allows the systems engineer to implement the design on-chip, by programming EE cells to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

Product terms with all connections opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state.

The PALCE22V10Z has 12 inputs and 10 I/O macrocells. The macrocell (Figure 1) allows one of four potential output configurations; registered output or combinatorial I/O, active high or active low (see Figure 2). The configuration choice is made according to the user's design specification and corresponding programming of the configuration bits $\mathrm{S}_{0}-\mathrm{S}_{1}$. Multiplexer controls are connected to ground (0) through a programmable bit, selecting the " 0 " path through the multiplexer. Erasing the bit disconnects the control line from GND and it floats to Vcc (1), selecting the "1" path.

The device is produced with a EE cell link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Utilizing an easily-implemented programming algorithm, these products can be rapidly programmed to any customized pattern.

Variable Input/Output Pin Ratio

The PALCE22V10Z has twelve dedicated input lines, and each macrocell output can be an I/O pin. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

Registered Output Configuration

Each macrocell of the PALCE22V10Z includes a D-type flip-flop for data storage and synchronization. The flipflop is loaded on the LOW-to-HIGH transition of the clock input. In the registered configuration $\left(\mathrm{S}_{1}=0\right)$, the array feedback is from \bar{Q} of the flip-flop.

Combinatorial I/O Configuration

Any macrocell can be configured as combinatorial by selecting the multiplexer path that bypasses the flip-flop ($S_{1}=1$). In the combinatorial configuration the feedback is from the pin.

15700E-4
Figure 1. Output Logic Macrocell

Registered/Active Low

Registered/Active High

Combinatorial/Active Low

Combinatorial/Active High

Figure 2. Macrocell Configuration Options

Programmable Three-State Outputs

Each output has a three-state output buffer with threestate control. A product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin, and may be configured as a dedicated input if the buffer is always disabled.

Programmable Output Polarity

The polarity of each macrocell output can be active high or active low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" efforts.

Selection is controlled by programmable bit S_{0} in the output macrocell, and affects both registered and combinatorial outputs. Selection is automatic, based on the design specification and pin definitions. If the pin definition and output equation have the same polarity, the output is programmed to be active high ($\mathrm{S}_{0}=1$).

Preset/Reset

For initialization, the PALCE22V10Z has additional Preset and Reset product terms. These terms are connected to all registered outputs. When the Synchronous Preset (SP) product term is asserted high, the output registers will be loaded with a HIGH on the next LOW-toHIGH clock transition. When the Asynchronous Reset (AR) product term is asserted high, the output registers will be immediately loaded with a LOW independent of the clock.

Note that preset and reset control the flip-flop, not the output pin. The output level is determined by the output polarity selected.

Zero-Standby Power Mode

The PALCE22V10Z features a zero-standby power mode. When none of the inputs switch for an extended period (typically 50 ns), the PALCE22V10Z will go into standby mode, shutting down most of its internal circuitry. The current will go to almost zero (Icc $<30 \mu \mathrm{~A}$). The outputs will maintain the states held before the device went into the standby mode.

When any input switches, the internal circuitry is fully enabled and power consumption returns to normal. This feature results in considerable power savings for operation at low to medium frequencies. This savings is illustrated in the Icc vs. frequency graph.

Product-Term Disable

On a programmed PALCE22V10Z, any product terms that are not used are disabled. Power is cut off from these product terms so that they do not draw current. As shown in the Icc vs. frequency graph, product-term disabling results in considerable power savings. This savings is greater at the higher frequencies.

Further hints on minimizing power consumption can be found in the Application Note "Minimizing Power Consumption with Zero-Power PLDs."

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PALCE22V10Z will depend on the programmed output polarity. The V_{Cc} rise must be monotonic and the reset delay time is 1000 ns maximum.

Register Preload

The registers on the PALCE22V10Z can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Bit

After programming and verification, a PALCE22V10Z design can be secured by programming the security EE bit. Once programmed, this bit defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security bit is programmed, the array will read as if every bit is erased, and preload will be disabled.

The bit can only be erased in conjunction with erasure of the entire pattern.

Programming and Erasing

The PALCE22V10Z can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Quality and Testability

The PALCE22V10Z offers a very high level of built-in quality.

The erasability of the CMOS PALCE22V10Z allows direct testing of the device array to guarantee 100% programming and functional yields.

Technology

The high-speed PALCE22V10Z is fabricated with AMD's advanced electrically-erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with HC and HCT devices. This technology provides strong input-clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

LOGIC DIAGRAM
 SKINNYDIP (PLCC) Pinouts

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground
-0.5 V to +7.0 V
DC Input Voltage
. -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O Pin
Voltage
. -0.5 V to Vcc +0.5 V
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Industrial (I) Devices

Operating Case
Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (V_{cc}) with
Respect to Ground +4.5 V to +5.5 V
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Voh	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{lOH}=6 \mathrm{~mA}$	3.84		V
			$\mathrm{IOH}=20 \mu \mathrm{~A}$	$\begin{gathered} \hline \text { VCC- } \\ 0.1 \end{gathered}$		V
Vol	Output LOW Voltage	$\begin{aligned} & \text { VIN }=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{loL}=16 \mathrm{~mA}$		0.5	V
			$\mathrm{lOL}=6 \mathrm{~mA}$		0.33	V
			$\mathrm{loL}=20 \mu \mathrm{~A}$		0.1	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Notes 1, 2)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Notes 1, 2)			0.9	V
IIH	Input HIGH Leakage Current	VIn $=$ Vcc, Vcc = Max (Note 3)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)			-10	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=\text { VCC, } \mathrm{VCC}=\mathrm{Max} \\ & \text { VIN }=\text { VIH or } \mathrm{VIL}(\text { Note } 3) \end{aligned}$			10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \mathrm{~V}, \text { VCC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 3) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 4)		-5	-150	mA
ICC	Supply Current	$\begin{aligned} & \text { Outputs Open (lout = } 0 \mathrm{~mA} \text {) } \\ & \text { Vcc }=\mathrm{Max} \end{aligned}$	$\mathrm{f}=0 \mathrm{MHz}$		30	$\mu \mathrm{A}$
			$\mathrm{f}=15 \mathrm{MHz}$		100	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.
3. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

AMD

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Condition		Typ	Unit
CIN	Input Capacitance	V IN $=2.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{VcC}=5.0 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			Min	Max	Unit
t_{PD}	Input or Feedback to Combinatorial Output				15	ns
ts	Setup Time from Input, Feedback or SP to Clock			10		ns
tH	Hold Time			0		ns
tco	Clock to Output				10	ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset to Registered Output				20	ns
$\mathrm{t}_{\text {ARW }}$	Asynchronous Reset Width			15		ns
$\mathrm{t}_{\text {ARR }}$	Asynchronous Reset Recovery Time			10		ns
tspR	Synchronous Preset Recovery Time			10		ns
twL	Clock Width	LOW		8		ns
twn		HIGH		8		ns
$f_{\text {max }}$	Maximum Frequency (Notes 3 and 4)	External Feedback	1/($\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{c}}$)	50		MHz
		Internal Feedback (f font	$1 /\left(t_{s}+t_{\text {cF }}\right)$	58.8		MHz
		No Feedback	$1 /\left(\mathrm{t}_{\mathrm{wh}}+\mathrm{twL}_{\text {L }}\right.$)	62.5		MHz
$t_{\text {EA }}$	Input to Output Enable Using Product Term Control				15	ns
$t_{\text {ER }}$	Input to Output Disable Using Product Term Control				15	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are evaluated at initial characterization and any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground
-0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O Pin
Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A}) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{Cc}) with
Respect to Ground
+4.75 V to +5.25 V
Industrial (I) Devices
Operating Case
Temperature (Tc) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (V_{cc}) with
Respect to Ground 4.5 V to +5.5 V
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{VIN}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{IOH}=6 \mathrm{~mA}$	3.84		V
			$\mathrm{IOH}=20 \mu \mathrm{~A}$	$\begin{gathered} \hline \text { VCC- } \\ 0.1 \end{gathered}$		V
Vol	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{loL}=16 \mathrm{~mA}$		0.5	V
			$\mathrm{IOL}=6 \mathrm{~mA}$		0.33	V
			$\mathrm{loL}=20 \mu \mathrm{~A}$		0.1	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Notes 1, 2)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Notes 1, 2)			0.9	V
IIH	Input HIGH Leakage Current	$\mathrm{VIN}=\mathrm{Vcc}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max}$ (Note 3)			-10	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=\text { VCC, VCC = Max } \\ & \text { VIN }=\text { VIH or VIL (Note 3) } \end{aligned}$			10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 3) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 4)		-5	-150	mA
Icc	Supply Current	$\begin{aligned} & \text { Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \text { Vcc }=\mathrm{Max} \end{aligned}$	$\mathrm{f}=0 \mathrm{MHz}$		30	$\mu \mathrm{A}$
			$\mathrm{f}=15 \mathrm{MHz}$		120	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.
3. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

AMD

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Condition		Typ	Unit
CIN	Input Capacitance	V IN $=2.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V} \\ & \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			Min	Max	Unit
tpd	Input or Feedback to Combinatorial Output (Note 3)				25	ns
ts	Setup Time from Input, Feedback or SP to Clock			15		ns
th	Hold Time			0		ns
tco	Clock to Output				15	ns
tar	Asynchronous Reset to Registered Output				25	ns
tarw	Asynchronous Reset Width			25		ns
tarr	Asynchronous Reset Recovery Time			25		ns
tspr	Synchronous Preset Recovery Time			25		ns
twL	Clock Width	LOW		10		ns
twh		HIGH		10		ns
$f_{\text {max }}$	Maximum Frequency (Notes 4 and 5)	External Feedback	1/(ts + tco)	33.3		MHz
		Internal Feedback (f $\mathrm{f}_{\text {cNT }}$)	1/(ts + tcF)	35.7		MHz
		No Feedback	1/(twh + twl)	50		MHz
tea	Input to Output Enable Using Product Term Control				25	ns
ter	Input to Output Disable Using Product Term Control				25	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. This parameter is tested in Standby Mode. When the device is not in Standby Mode, the tpD will typically be 5 ns faster.
4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.
5. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

Combinatorial Output

15700E-9

Clock Width

15700E-11
Asynchronous Reset

Registered Output

15700E-10

Input to Output Disable/Enable

Synchronous Preset

Notes:

1. $V_{T}=1.5 \mathrm{~V}$ for input signals and $\mathrm{Vcc} / 2$ for output signals.
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times 2 ns-5 ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	OUTPUTS Must be Steady		
May Change from H to L Steady	Will be Changing from H to L		
May			
Change			
from L to H			
Don't Care,			
Any Change			
Permitted		\quad	Will be
:---			
Changing			
from L to H			
State			
Unknown			

SWITCHING TEST CIRCUIT

Specification	S_{1}	S_{2}	CL	R1	R2	Measured Output Value
tpd, tco	Closed	Closed	30 pF	820Ω	820Ω	Vcc/2
tea	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Open } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Closed } \end{aligned}$	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Closed } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Open } \end{aligned}$				Vcc/2
ter	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z} \text { : Open } \\ & \mathrm{L} \rightarrow \mathrm{Z} \text { : Closed } \end{aligned}$	$\mathrm{H} \rightarrow$ Z: Closed L \rightarrow Z: Open	5 pF			$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS FOR THE PALCE22V10Z-15
$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

*Percent of product terms used.
15700E-14

Icc vs. Frequency
Graph for the PALCE22V10Z-15

TYPICAL Icc CHARACTERISTICS FOR THE PALCE22V10Z-25
$\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Icc vs. Frequency
Graph for the PALCE22V10Z-25

ENDURANCE CHARACTERISTICS

The PALCE22V10Z is manufactured using AMD's advanced Electrically Erasable process. This technology
Endurance Characteristics

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

ROBUSTNESS FEATURES

The PALCE22V10Z has some unique features that make it extremely robust, especially when operating in high speed design environments. Input clamping circuitry limits negative overshoot, eliminating the
uses an EE cell to replace the fuse link used in bipolar parts. As a result, the device can be erased and reprogrammed-a feature which allows 100% testing at the factory.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typical Output
15700E-16

POWER-UP RESET FOR THE PALCE22V10Z FAMILY

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will depend on the programmed pattern. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways $V_{c c}$ can rise to its steady state, four conditions are required to ensure a valid power-up reset. These conditions are:

- The supply voltage prior to the Vcc rise must not exceed Vcc off.
- The V_{cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.
- If inputs are not switching at the time of power-up, an input transition must take place to assure proper data is set-up in registers or to outputs.

Parameter Symbol	Parameter Description	Max	Unit
tpR	Power-Up Reset Time	1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics	
twL	Clock Width LOW	100	mV
Vcc Off	Supply Voltage Prior to Power-Up		

15700E-17

Power-Up Reset Waveform

PALCE26V12 Family

28-Pin EE CMOS Versatile PAL Device

DISTINCTIVE CHARACTERISTICS

- 28-pin versatile PAL programmable logic device architecture
- Electrically erasable CMOS technology provides half power (only 115 mA) at high speed (7.5 ns propagation delay)
- 14 dedicated inputs and 12 input/output macrocells for architectural flexibility
- Macrocells can be registered or combinatorial, and active high or active low
- Varied product term distribution allows up to 16 product terms per output
- Two clock inputs for independent functions

■ Global asynchronous reset and synchronous preset for initialization
■ Register preload for testability and built-in register reset on power-up
■ Space-efficient 28-pin SKINNYDIP and PLCC packages

- Center V $_{\mathrm{cc}}$ and GND pins to improve signal characteristics
- Extensive third-party software and programmer support through FusionPLD partners

GENERAL DESCRIPTION

The PALCE26V12 is a 28 -pin version of the popular PAL22V10 architecture. Built with low-power, highspeed, electrically-erasable CMOS technology, the PALCE26V12 offers many unique advantages.

Device logic is automatically configured according to the user's design specification. Design is simplified by design software, allowing automatic creation of a programming file based on Boolean or state equations. The software can also be used to verify the design and can provide test vectors for the programmed device.

The PALCE26V12 utilizes the familiar sum-of-products (AND/OR) architecture that allows users to implement complex logic functions easily and efficiently. Multiple levels of combinatorial logic can always be reduced to sum-of-products form, taking advantage of the very wide input gates available in PAL devices. The functions are programmed into the device through electrically-erasable floating-gate cells in the AND logic array and the macrocells. In the unprogrammed state, all AND product terms float HIGH. If both true and complement of any input are connected, the term will be permanently LOW.

The product terms are connected to the fixed OR array with a varied distribution from 8 to 16 across the outputs (see Block Diagram). The OR sum of the products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial, active high or active low, with registered I/O possible. The flip-flop can be clocked by one of two clock inputs. The output configuration is determined by four bits controlling three multiplexers in each macrocell.

AMD's FusionPLD program allows PALCE26V12 designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that third-party tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar. Please refer to the PLD Software Reference Guide for certified development systems and the Programmer Reference Guide for approved programmers.

BLOCK DIAGRAM

16072E-1

CONNECTION DIAGRAMS

Top View

16072E-3

Note:
16072E-2
Pin 1 is marked for orientation.

PIN DESCRIPTION

```
CLK = Clock
GND = Ground
I = Input
I/O = Input/Output
Vcc = Supply Voltage
```


ORDERING INFORMATION

Commercial and Industrial Products

AMD commercial and industrial programmable logic products are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations		
PALCE26V12H-7	JC	
PALCE26V12H-10	14	
PALCE26V12H-15		
PALCE, PI, JI		

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION

The PALCE26V12 has fourteen dedicated input lines, two of which can be used as clock inputs. Unused inputs should be tied directly to ground or Vcc. Buffers for device inputs and feedbacks have both true and complementary outputs to provide user-selectable signal polarity. The inputs drive a programmable AND logic array, which feeds a fixed OR logic array.

The OR gates feed the twelve I/O macrocells (see Figure 1). The macrocell allows one of eight potential output configurations; registered or combinatorial, active high or active low, with register or I/O pin feedback (see Figure 2). In addition, registered configurations can be clocked by either of the two clock inputs.
The configuration choice is made according to the user's design specification and corresponding programming of the configuration bits S0-S3 (see Table 1). Multiplexer controls initially float to V_{CC} (1) through a programmable cell, selecting the " 1 " path through the multiplexer. Programming the cell connects the control line to GND (0), selecting the " 0 " path.

Table 1. Macrocell Configuration Table

S3	S1	S0	Output Configuration
1	0	0	Registered Output and Feedback, Active Low
1	0	1	Registered Output and Feedback, Active High
1	1	0	Combinatorial I/O, Active Low
1	1	1	Combinatorial I/O, Active High
0	0	0	Registered I/O, Active Low
0	0	1	Registered I/O, Active High
0	1	0	Combinatorial Output, Registered Feedback, Active Low
0	1	1	Combinatorial Output, Registered Feedback, Active High

[^1]| S2 | Clock Input 2 |
| :---: | :--- |
| 1 | $\mathrm{CLK}_{1} / \mathrm{l}_{0}$ |
| 0 | $\mathrm{CLK}_{2} / \mathrm{l}_{3}$ |

*When $S_{3}=1$ (unprogrammed) the feedback is selected by S_{1}. When $S_{3}=0$ (programmed), the feedback is the opposite of that selected by S_{1}.

16072E-4
Figure 1. PALCE26V12 Macrocell

Registered or Combinatorial

Each macrocell of the PALCE26V12 includes a D-type flip-flop for data storage and synchronization. The flip-flop is loaded on the LOW-to-HIGH edge of the selected clock input. Any macrocell can be configured as combinatorial by selecting a multiplexer path that bypasses the flip-flop. Bypass is controlled by bit S 1 .

Programmable Clock

The clock input for any flip-flop can be selected to be from either pin 1 or pin 4. A 2:1 multiplexer controlled by bit S2 determines the clock input.

Programmable Feedback

A 2:1 multiplexer allows the user to determine whether the macrocell feedback comes from the flip-flop or from the I/O pin, independent of whether the output is registered or combinatorial. Thus, registered outputs may have internal register feedback for higher speed (fmax internal), or I/O feedback for use of the pin as a direct input (fmax external). Combinatorial outputs may have I/O feedback, either for use of the signal in other equations or for use as another direct input, or register feedback.

The feedback multiplexer is controlled by the same bit (S1) that controls whether the output is registered or combinatorial, as on the 22 V 10 , with an additional control bit (S3) that allows the alternative feedback path to be selected. When S3 = 1, S1 selects register feedback for registered outputs $(S 1=0)$ and $1 / O$ feedback for combinatorial outputs $(S 1=1)$. When S3 = 0 , the opposite is selected: I/O feedback for registered outputs and register feedback for combinatorial outputs.

Programmable Enable and I/O

Each macrocell has a three-state output buffer controlled by an individual product term. Enable and disable can be a function of any combination of device inputs or feedback. The macrocell provides a bidirectional I/O pin if I/O feedback is selected, and may be configured as a dedicated input if the buffer is always disabled. This is accomplished by connecting all inputs to the enable term, forcing the AND of the complemented inputs to be always LOW. To permanently enable the outputs, all inputs are left disconnected from the term (the unprogrammed state).

Programmable Output Polarity

The polarity of each macrocell output can be active high or active low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" efforts.

Selection is controlled by programmable bit S0 in the output macrocell, and affects both registered and combinatorial outputs. Selection is automatic, based on the design specification and pin definitions. If the pin definition and output equation have the same polarity, the output is programmed to be active high.

Preset/Reset

For initialization, the PALCE26V12 has additional Preset and Reset product terms. These terms are connected to all registered outputs. When the Synchronous Preset (SP) product term is asserted high, the output registers will be loaded with a HIGH or the next LOW-to-HIGH clock transition. When the Asynchronous Reset (AR) product term is asserted high, the output registers will be immediately loaded with a LOW independent of the clock.

Note that preset and reset control the flip-flop, not the output pin. The output level is determined by the output polarity selected.

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. Outputs of the PALCE26V12 will be HIGH or LOW depending on whether the output is active low or active high, respectively. The V_{cc} rise must be monotonic, and the reset delay time is 1000 ns maximum.

Register Preload

The register on the PALCE26V12 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, thereby making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Bit

After programming and verification, a PALCE26V12 design can be secured by programming the security bit. Once programmed, this bit defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. Programming the security bit disables preload, and the array will read as if every bit is disconnected. The security bit can only be erased in conjunction with erasure of the entire pattern.

Programming and Erasing

The PALCE26V12 can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Quality and Testability

The PALCE26V12 offers a very high level of built-in quality. The erasability of the device provides a means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The high-speed PALCE26V12 is fabricated with AMD's advanced electrically erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

Registered Active-Low Output, Register Feedback

Registered Active-Low I/O

Registered Active-High Output, Register Feedback

Registered Active-High I/O

Registered Outputs

Combinatorial Active-Low I/O

Combinatorial Active-Low Output, Register Feedback

Figure 2. PALCE26V12 Macrocell Configuration Options

LOGIC DIAGRAM

LOGIC DIAGRAM (continued)

*When $S_{3}=1$ (unprogrammed) the feedback is selected by S_{1}.
When $S_{3}=0$ (programmed), the feedback is the opposite of
that selected by S_{1}.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature \qquad
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V
DC Input Voltage -0.6 V to +7.0 V
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage 2001 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_{A})
Operating in Free Air
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V
Industrial (I) Devices
Ambient Temperature (T_{A})
Operating in Free Air $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground
+4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions			Min	Max	Unit
Vor	Output HIGH Voltage	$\mathrm{loH}=-3.2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}^{2} \end{aligned}$		2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { loL }=16 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$				0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)			2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)				0.8	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{Max}$ (Note 2)				10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{V}_{1 N}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$ (Note 2)				-10	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \mathrm{V}_{\text {out }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {cC }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }}(\text { Note 2) } \end{aligned}$				10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \mathrm{V}_{\text {OUt }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { (Note 2) } \end{aligned}$				-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$ (Note 3)			-30	-170	mA
Icc (Static)	Commercial Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { Outp } \\ & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{f}= \end{aligned}$	$\begin{aligned} & \text { Open (lout }=0 \mathrm{~mA}) \\ & \mathrm{Hz} \end{aligned}$	H-7/10		115	mA
Icc (Dynamic)		Vin $=0 \mathrm{~V}$, Outputs Open $($ lout $=0 \mathrm{~mA})$ $V_{C C}=M a x, f=15 \mathrm{MHz}$		H-7/10		140	mA
lcc (Dynamic)	Industrial Supply Current			H-10		150	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	5	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-7		-10		Unit
				Min	Max	Min	Max	
tpD	Input or Feedback to Combinatorial Output				7.5		10	ns
ts1	Setup Time from Input or Feedback			3.5		5		ns
ts2	Setup Time from SP to Clock			4.5		5		ns
tH	Hold Time			0		0		ns
tco	Clock to Output				6		9	ns
tar	Asynchronous Reset to Registered Output				11		13	ns
tarw	Asynchronous Reset Width			6		8		ns
$\mathrm{t}_{\text {ARR }}$	Asynchronous Reset Recovery Time			5		8		ns
tspR	Synchronous Preset Recovery Time			5		8		ns
twL	Clock Width	LOW		3.5		4		ns
twh		HIGH		3.5		4		ns
$\mathrm{f}_{\text {max }}$	Maximum Frequency (Notes 3 and 4)	External Feedback	1/(ts + tco)	105.3		71.4		MHz
		Internal Feedback (fCNT)	$1 /\left(t_{s}+t_{c F}\right)$	125		105		MHz
tea	Input to Output Enable Using Product Term Control				8		10	ns
ter	Input to Output Disable Using Product Term Control				7.5		10	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
-0.5 V to +7.0 V
DC Input Voltage
-0.6 V to +7.0 V
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage
2001 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_{A})
Operating in Free Air
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V
Industrial (I) Devices
Ambient Temperature (T_{A})
Operating in Free Air $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{l} \mathrm{OH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{loL}=16 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$			0.4	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{Max}$ (Note 2)			10	$\mu \mathrm{A}$
ILL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{~V} \mathrm{cc}=\mathrm{Max}$ (Note 2)			-10	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \mathrm{V}_{\text {out }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }}(\text { Note 2) } \end{aligned}$			10	$\mu \mathrm{A}$
lozı	Off-State Output Leakage Current LOW	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\operatorname{Max} \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }}(\text { Note 2) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {cC }}=\mathrm{Max}$ (Note 3)		-30	-160	mA
Icc (Static)	Commerical Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text {, Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{f}=0 \mathrm{MHz} \end{aligned}$	H-15/20		105	mA
Icc (Dynamic)		$\begin{aligned} & V_{I N}=0 \mathrm{~V}, \text { Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz} \end{aligned}$	H-15		150	mA
Icc (Static)	Industrial Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text {, Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \end{aligned}$	H-20		130	mA
Icc (Dynamic)		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text {, Outputs Open }(\text { lout }=0 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz} \end{aligned}$	$\mathrm{H}-20$		150	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN_{1}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & f=1 \mathrm{MHz} \end{aligned}$	5	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-15		-20		Unit
				Min	Max	Min	Max	
tpd	Input or Feedback to Combinatorial Output				15		20	ns
ts	Setup Time from Input, Feedback, or SP to Clock			10		13		ns
t_{H}	Hold Time			0		0		ns
tco	Clock to Output				10		12	ns
$\mathrm{taR}_{\text {A }}$	Asynchronous Reset to Registered Output				20		25	ns
tarw	Asynchronous Reset Width			15		20		ns
$\mathrm{t}_{\text {ARR }}$	Asynchronous Reset Recovery Time			15		20		ns
tspr	Synchronous Preset Recovery Time			10		13		ns
twL	Clock Width	LOW		8		10		ns
twh		HIGH		8		10		ns
$\mathrm{fmax}^{\text {max }}$	Maximum Frequency (Notes 3 and 4)	External Feedback	1/(ts + tco)	50		40		MHz
		Internal Feedback (fcnt)	1/(ts + tcF)	58.8		43		MHz
tea	Input to Output Enable Using Product Term Control				15		20	ns
ter	Input to Output Disable Using Product Term Control				15		20	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

Notes:

1. $V_{T}=1.5 \mathrm{~V}$
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times 2 ns-5 ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
$\boxed{\square} 9$	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is High- Impedance "Off" State

SWITCHING TEST CIRCUIT

16072E-13

Specification	S1	C_{L}	R1	R2	Measured Output Value
tpd, tco	Closed	50 pF	300Ω	$\begin{gathered} \text { Com'I: H-15/20 } \\ \text { Ind: H-20 } \\ 390 \Omega \end{gathered}$	1.5 V
tea	$\mathrm{Z} \rightarrow \mathrm{H}$: Open Z \rightarrow L: Closed				1.5 V
ter	$\mathrm{H} \rightarrow \mathrm{Z}$: Open L \rightarrow Z: Closed	5 pF		$\begin{gathered} \text { Com'I: H-7/10 } \\ \text { Ind: } \mathrm{H}-10 / 15 \\ 300 \Omega \end{gathered}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS FOR THE PALCE26V12H-7/10

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

The selected "typical" pattern utilized 50\% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching.
By utilizing 50% of the device, a midpoint is defined for $I_{c c}$. From this midpoint, a designer may scale the $I_{c c}$ graphs up or down to estimate the Icc requirements for a particular design.

AMD

ENDURANCE CHARACTERISTICS

The PALCE26V12 is manufactured using AMD's advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar
parts. As a result, the device can be erased and reprogrammed-a feature which allows 100% testing at the factory.

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

Bus-Friendly Inputs

The PALCE26V12H-7/10 (Com') and H-10/15 (Ind) inputs and I/O loop back to the input after the second stage of the input buffer. This configuration reinforces
the state of the input and pulls the voltage away from the input threshold voltage where noise can cause oscillations. For an illustration of this configuration, see below.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR REV. C VERSION*

16072E-15
Output

Device	Rev. Letter
PALCE26V12H-7	
PALCE26V12H-10	C
PALCE26V12H-15	

[^2]
ROBUSTNESS FEATURES

The PALCE26V12 has some unique features that make it extremely robust, especially when operating in high speed design environments. Input clamping circuitry limits negative overshoot, eliminating the possibility of
false clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse width of less than about 100 ns .

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR REV. B VERSION*

Typical Input

Typical Output
16072E-16

Device	Rev. Letter
PALCE26V12-15	B
PALCE26V12-20	

Topside Marking:
AMD CMOS PLD's are marked on top of the package in the following manner:

PALCE xxxx
Datecode (4 numbers) LOT ID (3 characters) - - (Rev. Letter)
The Lot ID and Rev. letter are separated by two spaces.

POWER-UP RESET

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will depend on the programmed configuration. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide
range of ways Vcc can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- The V_{Cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Max	Unit
tpr	Power-Up Reset Time	1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics	
twL	Clock Width LOW		

Power-Up Reset Waveform

TYPICAL THERMAL CHARACTERISTICS

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

PALCE26V12

Parameter Symbol	Parameter Description				Unit
			SKINNYDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		19	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta \mathrm{ja}$	Thermal impedance, junction to ambient		65	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ jma	Thermal impedance, junction to ambient with air flow	200 lfpm air	59	48	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	54	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	50	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	50	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic θ jc Considerations

The data listed for plastic $\theta j c$ are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the θj c measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, $\theta j \mathrm{c}$ tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

$\mathbf{f}_{\text {MAX }}$ Parameters

The parameter $f_{\text {max }}$ is the maximum clock rate at which the device is guaranteed to operate. Because the flexibility inherent in programmable logic devices offers a choice of clocked flip-flop designs, $\mathrm{f}_{\mathrm{max}}$ is specified for three types of synchronous designs.

The first type of design is a state machine with feedback signals sent off-chip. This external feedback could go back to the device inputs, or to a second device in a multi-chip state machine. The slowest path defining the period is the sum of the clock-to-output time and the input setup time for the external signals ($t s+t c o$). The reciprocal, $f_{M A X}$, is the maximum frequency with external feedback or in conjunction with an equivalent speed device. This $f_{\text {max }}$ is designated "fmax external."

The second type of design is a single-chip state machine with internal feedback only. In this case, flip-flop inputs are defined by the device inputs and flip-flop outputs. Under these conditions, the period is limited by the
internal delay from the flip-flop outputs through the internal feedback and logic to the flip-flop inputs. This $f_{\text {max }}$ is designated "fmax internal". A simple internal counter is a good example of this type of design, therefore, this parameter is sometimes called "fcnt."

The third type of design is a simple data path application. In this case, input data is presented to the flip-flop and clocked through; no feedback is employed. Under these conditions, the period is limited by the sum of the data setup time and the data hold time ($\mathrm{ts}+\mathrm{th}$). However, a lower limit for the period of each fmax type is the minimum clock period (twh + twl). Usually, this minimum clock period determines the period for the third $f_{M A X}$, designated "fmax no feedback."
$f_{\text {MAX }}$ external and $f_{\text {max }}$ no feedback are calculated parameters. fMAX external is calculated from ts and tco, and $f_{\text {max }}$ no feedback is calculated from twl and twh. fmax internal is measured.

DISTINCTIVE CHARACTERISTICS

- As fast as 5-ns propagation delay and 142.8 MHz fmax (external)
- Low-power EE CMOS
- 10 macrocells programmable as registered or combinatorial, and active high or active low to match application needs
- Varied product term distribution allows up to 16 product terms per output for complex functions
- Peripheral Component Interconnect (PCI) compliant (-5/-7/-10)

■ Global asynchronous reset and synchronous preset for initialization

- Power-up reset for initialization and register preload for testability
- Extensive third-party software and programmer support through FusionPLD partners
- 24-pin SKINNYDIP, 24-pin SOIC, 24-pin Flatpack and 28-pin PLCC and LCC packages save space
■ 5-ns and 7.5-ns versions utilize split leadframes for improved performance

GENERAL DESCRIPTION

The PALCE22V10 provides user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.
The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.
The product terms are connected to the fixed OR array with a varied distribution from 8 to16 across the outputs (see Block Diagram). The OR sum of the products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial, and active
high or active low. The output configuration is determined by two bits controlling two multiplexers in each macrocell.
AMD's FusionPLD program allows PALCE22V10 designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that thirdparty tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar.

BLOCK DIAGRAM

CONNECTION DIAGRAMS

Top View

SKINNYDIP/SOIC/FLATPACK

CLK/Io 1^{\bullet}	24
$1{ }_{1} \square_{2}$	23
$\mathrm{I}_{2} \square_{3}$	22
$1_{3} \square 4$	21
$14 \zeta 5$	20
6	19
7	18
8	17
9	16
10	15
10011	14
GND 12	13

16564D-3

* For -5 , this pin must be grounded for guaranteed data sheet performance. If not grounded, AC timing may degrade by about 10\%.

Note:

Pin 1 is marked for orientation.

PIN DESIGNATIONS

```
CLK = Clock
GND = Ground
I = Input
I/O = Input/Output
NC = No Connect
Vcc = Supply Voltage
```


ORDERING INFORMATION

Commercial and Industrial Products

AMD programmable logic products for commercial and industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

1 AMD

FUNCTIONAL DESCRIPTION

The PALCE22V10 allows the systems engineer to implement the design on-chip, by programming EE cells to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required timeconsuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

Product terms with all connections opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state.

The PALCE22V10 has 12 inputs and 10 I/O macrocells. The macrocell (Figure 1) allows one of four potential output configurations; registered output or combinatorial I/O, active high or active low (see Figure 1). The configuration choice is made according to the user's design
specification and corresponding programming of the configuration bits $S_{0}-S_{1}$. Multiplexer controls are connected to ground (0) through a programmable bit, selecting the " 0 " path through the multiplexer. Erasing the bit disconnects the control line from GND and it is driven to a high level, selecting the " 1 " path.

The device is produced with a EE cell link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Utilizing an easily-implemented programming algorithm, these products can be rapidly programmed to any customized pattern.

Variable Input/Output Pin Ratio

The PALCE22V10 has twelve dedicated input lines, and each macrocell output can be an I/O pin. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

16564D-4
Figure 1. Output Logic Macrocell Diagram

Registered Output Configuration

Each macrocell of the PALCE22V10 includes a D-type flip-flop for data storage and synchronization. The flipflop is loaded on the LOW-to-HIGH transition of the clock input. In the registered configuration $\left(S_{1}=0\right)$, the array feedback is from \bar{Q} of the flip-flop.

Combinatorial I/O Configuration

Any macrocell can be configured as combinatorial by selecting the multiplexer path that bypasses the flip-flop ($\mathrm{S}_{1}=1$). In the combinatorial configuration the feedback is from the pin.

Registered/Active Low

Registered/Active High

Combinatorial/Active Low

Combinatorial/Active High

Figure 2. Macrocell Configuration Options

7 AMD

Programmable Three-State Outputs

Each output has a three-state output buffer with threestate control. A product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin, and may be configured as a dedicated input if the buffer is always disabled.

Programmable Output Polarity

The polarity of each macrocell output can be active high or active low, either to match output signal needs or to reduce product terms. Programmable polarity allows Boolean expressions to be written in their most compact form (true or inverted), and the output can still be of the desired polarity. It can also save "DeMorganizing" efforts.

Selection is controlled by programmable bit S_{0} in the output macrocell, and affects both registered and combinatorial outputs. Selection is automatic, based on the design specification and pin definitions. If the pin definition and output equation have the same polarity, the output is programmed to be active high $\left(S_{0}=1\right)$.

Preset/Reset

For initialization, the PALCE22V10 has Preset and Reset product terms. These terms are connected to all registered outputs. When the Synchronous Preset (SP) product term is asserted high, the output registers will be loaded with a HIGH on the next LOW-to-HIGH clock transition. When the Asynchronous Reset (AR) product term is asserted high, the output registers will be immediately loaded with a LOW independent of the clock.

Note that preset and reset control the flip-flop, not the output pin. The output level is determined by the output polarity selected.

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PALCE22V10 will depend on the programmed output polarity. The V_{Cc} rise must be monotonic and the reset delay time is 1000 ns maximum.

Register Preload

The register on the PALCE22V10 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows
direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Bit

After programming and verification, a PALCE22V10 design can be secured by programming the security EE bit. Once programmed, this bit defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security bit is programmed, the array will read as if every bit is erased, and preload will be disabled.

The bit can only be erased in conjunction with erasure of the entire pattern.

Programming and Erasing

The PALCE22V10 can be programmed on standard logic programmers. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Quality and Testability

The PALCE22V10 offers a very high level of built-in quality. The erasability of the device provides a direct means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The high-speed PALCE22V10 is fabricated with AMD's advanced electrically erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes, output slew-rate control, and a grounded substrate for clear switching.

PCI Compliance

The PALCE22V10H-5/7/10 is fully compliant with the PCI Local Bus Specification published by the PCI Special Interest Group. The PALCE22V10H-5/7/10's predictable timing ensures compliance with the PCI AC specifications independent of the design.

LOGIC DIAGRAM
 SKINNYDIP/SOIC/FLATPACK (PLCC/LCC) Pinouts

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground
. -0.5 V to +7.0 V
DC Input Voltage -0.5 V to V cc +1.0 V
DC Output or I/O Pin
Voltage -0.5 V to Vcc +1.0 V
Static Discharge Voltage
2001 V
Latchup Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ \qquad 100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{cc}) with
Respect to Ground \qquad +4.75 V to +5.25 V

Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \mathrm{IOL}=16 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V} \text { IH or } \mathrm{VIL} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.4	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN $=$ Vcc, Vcc = Max (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN = 0 V, Vcc = Max (Note 2)		-100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = Vcc, VcC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	-30	-130	mA
Icc (Static)	Supply Current	Outputs Open, (lout $=0 \mathrm{~mA}$), $\mathrm{Vcc}=\mathrm{Max}$		125	mA
Icc (Dynamic)	Supply Current	Outputs Open, (lout $=0 \mathrm{~mA}$), $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=25 \mathrm{MHz}$		140	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}$ $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$	5	p
COUT	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	8	pF	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description					Unit
				Min	Max	
tpd	Input or Feedback to Combinatorial Output				5	ns
ts1	Setup Time from Input or Feedback			3		ns
ts2	Setup Time from SP to Clock			4		ns
th	Hold Time			0		ns
tco	Clock to Output				4	ns
tskewr	Skew Between Registered Outputs (Note 3)				0.5	ns
tar	Asynchronous Reset to Registered Output				7.5	ns
tarw	Asynchronous Reset Width			4.5		ns
tARR	Asynchronous Reset Recovery Time			4.5		ns
tSPR	Synchronous Preset Recovery Time			4.5		ns
twL	Clock Width	LOW		2.5		ns
twh		HIGH		2.5		ns
$\mathrm{fmax}^{\text {max }}$	Maximum Frequency (Note 4)	External Feedback	1/(ts + tco)	142.8		MHz
		Internal Feedback (fcnt)	1/(ts + tcF) (Note 5)	150		MHz
		No Feedback	1/(twh + twL)	200		MHz
teA	Input to Output Enable Using Product Term Control				6	ns
ter	Input to Output Disable Using Product Term Control				5.5	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. Skew is measured with all outputs switching in the same direction.
4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
5. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature........ . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground \qquad -0.5 V to +7.0 V
DC Input Voltage 0.5 V to $\mathrm{V} \mathrm{cc}+1.0 \mathrm{~V}$
DC Output or I/O Pin
Voltage -0.5 V to $\mathrm{Vcc}+1.0 \mathrm{~V}$
Static Discharge Voltage
2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) \qquad 100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground \qquad
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { IoL }=16 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{VCC}_{2 c}=\mathrm{Min} \end{array}$		0.4	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	$\mathrm{VIN}_{\text {I }}=\mathrm{Vcc}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	VIN $=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = VCc, VCC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V}, \mathrm{VcC}=\text { Max } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 3) \end{aligned}$	-30	-130	mA
Icc (Static)	Supply Current	Outputs Open, (lout $=0 \mathrm{~mA}$), $\mathrm{Vcc}=\mathrm{Max}$		115	mA
Icc (Dynamic)	Supply Current	Outputs Open, (lout $=0 \mathrm{~mA}$), $\mathrm{VCC}=\mathrm{Max}, \mathrm{f}=25 \mathrm{MHz}$		140	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}$ $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$	5	p
COUT	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	8	pF	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description							Unit
				PDIP		PLCC		
				Min	Max	Min	Max	
tPD	Input or Feedback to Combinatorial Output			3	7.5	3	7.5	ns
ts1	Setup Time from Input or Feedback			5		4.5		ns
ts2	Setup Time from SP to Clock			6		6		ns
th	Hold Time			0		0		ns
tco	Clock to Output			2	5	2	4.5	ns
tskewr	Skew Between Registered Outputs (Note 3)				1		1	ns
tar	Asynchronous Reset to Registered Output				10		10	ns
tarw	Asynchronous Reset Width			7		7		ns
tarr	Asynchronous Reset Recovery Time			7		7		ns
tSPR	Synchronous Preset Recovery Time			7		7		ns
twL	Clock Width	LOW		3.5		3.0		ns
twh		HIGH		3.5		3.0		ns
fmax	Maximum Frequency (Note 4)	External Feedback	1/(ts + tco)	100		111		MHz
		Internal Feedback (fCNT)	1/(ts + tcF) (Note 5)	125		133		MHz
		No Feedback	1/(twh + twL)	142.8		166		MHz
teA	Input to Output Enable Using Product Term Control				7.5		7.5	ns
ter	Input to Output Disable Using Product Term Control				7.5		7.5	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. Skew is measured with all outputs switching in the same direction.
4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
5. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground \qquad -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{Cc}+1.0 \mathrm{~V}$
DC Output or I/O Pin
Voltage -0.5 V to $\mathrm{Vcc}+1.0 \mathrm{~V}$
Static Discharge Voltage
2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) 100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground \qquad +4.75 V to +5.25 V

Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \hline \mathrm{IOL}=16 \mathrm{~mA} & \mathrm{VIN}=\mathrm{V} \text { IH or } \mathrm{VIL} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.4	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN = Vcc, $\mathrm{Vcc}^{\text {a }}$ Max (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = Vcc, VcC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V}, \mathrm{~V} \text { cc }=\text { Max } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note 3) } \end{aligned}$	-30	-130	mA
Icc (Dynamic)	Supply Current	Outputs Open, (lout $=0 \mathrm{~mA}$), $\mathrm{Vcc}=\mathrm{Max}, \mathrm{f}=25 \mathrm{MHz}$		120	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. VOUT $=0.5 V$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}$ $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$	5	p
COUT	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	8	pF	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description					Unit
				Min	Max	
tpd	Input or Feedback to Combinatorial Output				10	ns
ts1	Setup Time from Input or Feedback			6		ns
ts2	Setup Time from SP to Clock			7		ns
th	Hold Time			0		ns
tco	Clock to Output				6	ns
taR	Asynchronous Reset to Registered Output				13	ns
tarw	Asynchronous Reset Width			8		ns
taRR	Asynchronous Reset Recovery Time			8		ns
tSPR	Synchronous Preset Recovery Time			8		ns
twL	Clock Width	LOW		4		ns
twh		HIGH		4		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	83.3		MHz
		Internal Feedback (fcnt)	1/(ts + tcF) (Note 4)	110		MHz
		No Feedback	1/(twh + twL)	125		MHz
tEA	Input to Output Enable Using Product Term Control				10	ns
ter	Input to Output Disable Using Product Term Control				9	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground . -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V} \mathrm{Cc}+1.0 \mathrm{~V}$
DC Output or I/O Pin
Voltage \qquad
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground +4.75 V to +5.25 V
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{VIN}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { IOL = 16 mA } & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.4	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
IIH	Input HIGH Leakage Current	VIN $=$ Vcc, $\mathrm{Vcc}_{\text {c }}=\mathrm{Max}$ (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=\text { Vcc, } \mathrm{VCC}_{\text {c }}=\mathrm{Max} \\ & \text { VIN }=\text { VIL or } \mathrm{V}_{\text {IH }}(\text { Note 2) } \end{aligned}$		10	$\mu \mathrm{A}$
lozı	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V}, \mathrm{~V} \text { CC }=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 3) \end{aligned}$	-30	-130	mA
Icc (Static)	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (lout $=0 \mathrm{~mA}$), $\mathrm{Vcc}=\mathrm{Max}$ (Note 4)		55	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of $I_{I L}$ and $l_{\text {ozL }}$ (or $I_{I_{H}}$ and $l_{O Z H}$).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. $V_{\text {Out }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. This parameter is guaranteed worst case under test condition. Refer to the I ICC vs. frequency graph for typical I ICC characteristics.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	Typ	Unit	
CIN	Input Capacitance	$\mathrm{VIN}=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$	5	pF
Cout	Output Capacitance	VOUT $=2.0 \mathrm{~V}$	8		

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description					Unit
				Min	Max	
tpd	Input or Feedback to Combinatorial Output				10	ns
ts	Setup Time from Input, Feedback or SP to Clock			6		ns
th	Hold Time			0		ns
tco	Clock to Output				6	ns
tAR	Asynchronous Reset to Registered Output				13	ns
tarw	Asynchronous Reset Width			8		ns
tARR	Asynchronous Reset Recovery Time			8		ns
tSPR	Synchronous Preset Recovery Time			8		ns
twL	Clock Width	LOW		4		ns
twh		HIGH		4		ns
$\mathrm{fmax}^{\text {max }}$	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	83		MHz
		Internal Feedback (fCNT)	1/(ts + tco) (Note 4)	110		MHz
		No Feedback	1/(tw + twL)	125		MHz
tea	Input to Output Enable Using Product Term Control				10	ns
ter	Input to Output Disable Using Product Term Control				9	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground
. . .
DC Input Voltage -0.5 V to V cc +0.5 V
DC Output or I/O Pin
Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage
2001 V
Latchup Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right) \ldots . . .100 \mathrm{~mA}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{cc}) with
Respect to Ground (H/Q-15) +4.75 V to +5.25 V
Supply Voltage (Vcc) with
Respect to Ground (H/Q-25) +4.5 V to +5.5 V
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
Voh	Output HIGH Voltage	$\begin{array}{ll} \hline \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { IoL = } 16 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$			0.4	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
IIH	Input HIGH Leakage Current	$\mathrm{VIN}_{\text {I }}=\mathrm{Vcc}, \mathrm{Vcc}_{\text {c }}=\mathrm{Max}($ Note 2)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}, \mathrm{~V}$ cc $=\mathrm{Max}$ (Note 2)			-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = Vcc, VCC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$			10	$\mu \mathrm{A}$
lozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { VOUT = } 0 \text { V, VCC = Max, } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$			-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V}, \mathrm{~V} \text { CC }=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 3) \end{aligned}$		-30	-130	mA
Icc	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (lout $=0 \mathrm{~mA}$), Vcc $=$ Max	H		90	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
Cln	Input Capacitance	VIN $=2.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

ParameterSymbol	Parameter Description			-15		-25		Unit
				Min	Max	Min	Max	
tpD	Input or Feedback to Combinatorial Output				15		25	ns
ts	Setup Time from Input, Feedback or SP to Clock			10		15		ns
th	Hold Time			0		0		ns
tco	Clock to Output				10		15	ns
tar	Asynchronous Reset to Registered Output				20		25	ns
tarw	Asynchronous Reset Width			15		25		ns
tARR	Asynchronous Reset Recovery Time			10		25		ns
tsPR	Synchronous Preset Recovery Time			10		25		ns
twL	Clock Width	LOW		8		13		ns
twh		HIGH		8		13		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	50		33.3		MHz
		Internal Feedback (fcNT)	$1 /(\mathrm{ts}+\mathrm{tcF})$ (Note 4)	58.8		35.7		MHz
tea	Input to Output Enable Using Product Term Control				15		25	ns
ter	Input to Output Disable Using Product Term Control				15		25	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect
to Ground \qquad -0.5 V to +7.0 V
DC Input Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
DC Output or I/O Pin
Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Industrial (I) Devices

Ambient Temperature (T_{A})
Operating in Free Air $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (Vcc) with
Respect to Ground
+4.5 V to +5.5 V
Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description		Test Conditio		Min	Max	Unit
VOH	Output HIGH Voltage		$\mathrm{IOH}=-3.2 \mathrm{~mA}$	$\begin{aligned} & \text { VIN }=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{VCC}_{\text {C }}=\text { Min } \end{aligned}$	2.4		V
Vol	Output LOW Voltage		$\mathrm{loL}=16 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{VCC}=\mathrm{Min} \end{aligned}$		0.4	V
V_{IH}	Input HIGH Voltage		Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage		Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
IIH	Input HIGH Leakage Current		$\mathrm{VIN}=\mathrm{Vcc}, \mathrm{Vcc}$	Max (Note 2)		10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current		V IN $=0 \mathrm{~V}, \mathrm{Vcc}$	Max (Note 2)		-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH		$\begin{aligned} & \text { Vout }=V_{C C}, \text { V } \\ & \text { VIN }^{2}=\text { VIL or }_{\text {II }} \end{aligned}$	$=\operatorname{Max},$ Note 2)		10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW		$\begin{aligned} & \text { Vout }=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}^{2} \end{aligned}$	$=$ Max, ote 2)		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current		$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{Not} \end{aligned}$	$c=5 \mathrm{~V}$	-30	-130	mA
Icc (Static)	Supply Current	H-20/25	VIN $=0$ V, Outputs Open (lout $=0 \mathrm{~mA}$), Vcc $=\mathrm{Max}$			100	
		H-10/15				110	mA
Icc (Dynamic)	Supply Current		$\begin{aligned} & \text { VIN = } 0 \mathrm{~V} \text {, Outh } \\ & \text { (IoUT }=0 \mathrm{~mA} \text {, } \end{aligned}$	Open $\mathrm{C}=\mathrm{Max}, \mathrm{f}=15 \mathrm{MHz}$		130	mA

Notes:

1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
Cin	Input Capacitance	V IN $=2.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	5	pF
Cout	Output Capacitance	Vout $=2.0 \mathrm{~V}$		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-10		-15		-20		-25		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
tpD	Input or Feedback to Combinatorial Output				10		15		20		25	ns
ts	Setup Time from Input, Feedback or SP to Clock			7		10		12		15		ns
th	Hold Time			0		0		0		0		ns
tco	Clock to Output				6		10		12		15	ns
tar	Asynchronous Reset to Registered Output				13		20		25		25	ns
tarw	Asynchronous Reset Width			8		15		20		25		ns
tarR	Asynchronous Reset Recovery Time			8		10		20		25		ns
tsPR	Synchronous Preset Recovery Time			8			10		14	25		ns
twL	Clock Width	LOW		4		8		10		13		ns
twh		HIGH		4		8		10		13		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + tco)	83.3		50		41.6		33.3		MHz
		Internal Feedback (fCNT)	$\begin{aligned} & 1 / \text { (ts + tcF) } \\ & \text { (Note 4) } \end{aligned}$	110		58.8		45.4		35.7		MHz
		No Feedback	1/(tw + twL)	125		83.3		50		38.5		MHz
tea	Input to Output Enable Using Product Term Control				10		15		20		25	ns
ter	Input to Output Disable Using Product Term Control				9		15		20		25	ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

Clock Width

Input to Output Disable/Enable

Notes:

1. $V_{T}=1.5 \mathrm{~V}$.
2. Input pulse amplitude 0 V to 3.0 V .
3. Input rise and fall times $2 n s-5$ ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	OUTPUTS Will be Steady

SWITCHING TEST CIRCUIT

Specification	S1	CL	Commercial		Measured Output Value
			R1	R2	
tpd, tco	Closed	50 pF	300Ω	All except H-5/7:	1.5 V
tea	$\mathrm{Z} \rightarrow \mathrm{H}$: Open Z \rightarrow L: Closed			390 ת	1.5 V
ter	$\mathrm{H} \rightarrow \mathrm{Z}$: Open L \rightarrow Z: Closed	5 pF		$\begin{aligned} & \mathrm{H}-5 / 7: \\ & 300 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{Vol}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS

$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Icc vs. Frequency

The selected "typical" pattern utilized 50\% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching.

By utilizing 50\% of the device, a midpoint is defined for Icc. From this midpoint, a designer may scale the Icc graphs up or down to estimate the Icc requirements for a particular design.

ENDURANCE CHARACTERISTICS

The PALCE22V10 is manufactured using AMD's advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar
parts. As a result, the device can be erased and reprogrammed-a feature which allows 100% testing at the factory.

Endurance Characteristics

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

Bus-Friendly Inputs

The PALCE22V10H-15/25, Q-25 (Com'l) and H-20 (Ind) inputs and I/O loop back to the input after the second stage of the input buffer. This configuration reinforces the state of the input and pulls the voltage away from the
input threshold voltage. Unlike a pull-up, this configuration cannot cause contention on a bus. For an illustration of this configuration, see the input/output equivalent schematics.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR SELECTED /4 DEVICES*

16564D-15

Device	Rev Letter
PALCE22V10H-15	
PALCE22V10H-20	H
PALCE22V10H-25	
PALCE22V10Q-25	I

ROBUSTNESS FEATURES

The PALCE22V10X-X/5 devices have some unique features that make them extremely robust, especially when operating in high-speed design environments. Pull-up resistors on inputs and I/O pins cause unconnected pins to default to a known state. Input clamping circuitry limits negative overshoot, eliminating the
possibility of false clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse width of less than about 100 ns for the $/ 5$ version. Selected $/ 4$ devices are also being retrofitted with these robustness features. See the chart below for device listing.

INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR /5 VERSION AND SELECTED /4 DEVICES*

Typical Input

Device	Rev Letter
PALCE22V10H-15	D
PALCE22V10H-25	D
PALCE22V10Q-25	F

Topside Marking:

AMD CMOS PLD's are marked on top of the package in the following manner:

PALCEXXXX
Datecode (3 numbers) Lot ID (4 characters)- -(Rev Letter)
The Lot ID and Rev Letter are separated by two spaces.

POWER-UP RESET

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will depend on the programmed pattern. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways

VCC can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- The V_{cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Max	Unit
tpR	Power-up Reset Time	1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics	
twL	Clock Width LOW		

16564D-17

Power-Up Reset Waveform

TYPICAL THERMAL CHARACTERISTICS

PALCE22V10/4 (PALCE22V10H-15)
Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description				Unit
			SKINNYDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		15	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja}	Thermal impedance, junction to ambient		72	54	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ jma	Thermal impedance, junction to ambient with air flow	200 Ifpm air	67	49	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 lfpm air	60	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	53	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	46	31	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PALCE22V10/5 (PALCE22V10H-10)

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description				Unit
			SKINNYDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		20	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{j a}$	Thermal impedance, junction to ambient		73	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jma }}$	Thermal impedance, junction to ambient with air flow	200 Ifpm air	66	48	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	61	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	55	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 lfpm air	52	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic Өjc Considerations

The data listed for plastic θ jc are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the 0jc measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, θj c tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

[^0]: Publication\# 16491 Rev. D Amendment/0
 Issue Date: February 1996

[^1]: 1 = Unprogrammed EE bit
 0 = Programmed EE bit

[^2]: Topside Marking:
 AMD CMOS PLD's are marked on top of the package in the following manner:

 PALCE xxxx
 Datecode (4 numbers) LOT ID (3 characters) - - (Rev. Letter) The Lot ID and Rev. letter are separated by two spaces.

