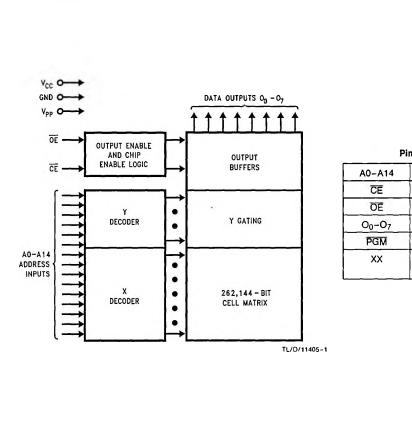


NM27LC256 262,144-Bit (32k x 8) Low Current CMOS EPROM

General Description

Block Diagram


The NM27LC256 is a 32k x 8 EPROM manufactured on a proven, manufacturable CMOS process, consuming extremely low current in both the active and standby modes. The NM27LC256 consumes a mere 17.5 mW, (typical) making it ideal for battery powered portable and hand held systems, and for systems using "in-line" power.

The NM27LC256 is one among a family of Power Miser products from National Semiconductor catering to the increasing low current demands of the market.

Offered in the JEDEC Pinout, the NM27LC256 offers a viable alternative to the user as a replacement for existing high power devices, while also providing an upgrade path to higher densities.

Features

- Low power consumption
 - 5V operation
- 4.5 mA (max) active
- 100 μ A (max) standby
- 170 ns access time
- Latch-up immunity to 200 mA
- ESD protection exceeds 2000V
- JEDEC standard pinout
- Manufacturer's identification code

Pin Names

A0-A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
O ₀ -O ₇	Outputs
PGM	Program
XX	Don't Care
	(During Read)

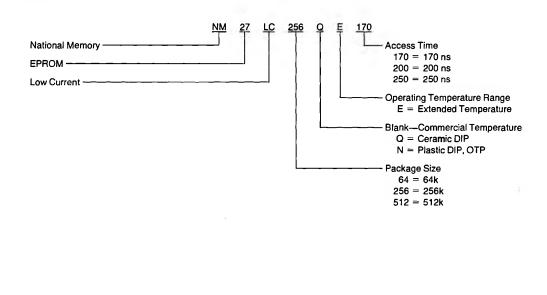
NM27LC256

Connection Diagrams

27LC010	27LC512	27LC64	DI	D	27LC64	27LC512	27LC010
XX/V _{PP}			NM27L				V _{CC}
A16			<u> </u>	, .			XX/PGM
A15	A15	VPP	- Vpp - 1	28 - V _{CC}	Vcc	Vcc	XX
A12	A12	A12	- A12 - 2	27 - A14	PGM	A14	A14
A7	A7	A7	A7 3	26 - A13	NC	A13	A13
A6	A6	A6	A6 4	25 - A8	A8	A8	A8
A5	A5	A5	A5 5	24 - A9	A9	A9	A9
A4	A4	A4	+4 6	23 - A11	A11	A11	A11
A3	A3	A3	A3 7	22 - OE	OE	OE/VPP	ŌE
A2	A2	A2	A2 8	21 - A10	A10	A10	A10
A1	A1	A1	A1 9	20 - CE	CE	CE	CE
A0	A0	A0	A0 10	19 - 07	07	07	07
00	00	00	00 11	18 - 06	O6	O6	O6
01	01	01	01 12	17 - 05	O5	O5	O5
02	O2	O2	02 13	16 - 04	04	O4	04
GND	GND	GND	- GND - 14	15 - 03	03	O3	03

TL/D/11405-2

Note: Compatible EPROM plan configurations are shown in the blocks adjacent to the NM27LC256 plan


Commercial Temperature Range (0°C to + 70°C) V_{CC} = 5V ± 10%

Extended Temperature Range (-40°C to +85°C) $V_{CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)
NM27LC256 Q, N, 170	170
NM27LC256 Q, N, 200	200
NM27LC256 Q, N, 250	250

Parameter/Order Number	Access Time (ns)
NM27LC256 QE, NE, 170	170
NM27LC256 QE, NE, 200	200
NM27LC256 QE, NE, 250	250

Ordering Information

Absolute Maximum Ratings (Note 1)

Storage Temperature	-65°C to +150°C
All Input Voltages Except A9 with Respect to Ground	-0.6V to +7V
V _{PP} and A9 with Respect to Ground	-0.6V to +14V
V _{CC} Supply Voltage with Respect to Ground	-0.6V to +7V

ESD Protection	
All Output Voltages with	
Respect to Ground	Vcc

/_{CC} + 1.0V to GND - 0.6V

Operating Range

Range	Temperature	Vcc
Commercial	0°C to +70°C	5V ±10%
Industrial	-40°C to +85°C	5V ±10%

Read Operation

DC Electrical Characteristics Over Operating Range with VPP = VCC

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
VIL	Input Low Level					0.8	V
VIH	Input High Level			2.0		V _{CC} + 1	V
VOL	Output Low Voltage	I _{OL} = 2.1 mA				0.4	V
VOH	Output High Voltage	I _{OH} = -400 μA		2.4			v
I _{SB1}	V _{CC} Standby Current (CMOS)	$\overline{CE} = V_{CC} \pm 0.3V$			0.5	100	μA
I _{SB2}	V _{CC} Standby Current	$\overline{CE} = V_{IH}$			0.1	1.0	mA
ICC1	CC1 V _{CC} Active Current TTL Inputs	$\overline{CE} = \overline{OE} V_{IL}, F = 3 MHz$ Inputs V_{IH} or V_{IL}	Com'l		7.0	9.0	mA
			Ind'l		7.0	10.0	
I _{CC2}	V _{CC} Active Current CMOS Inputs	$\overline{CE} = GND, F = 3 MHz$ Inputs = V_{CC} or GND,	Com'l		3.5	4.5	mA
		1/O = 0 mA (See <i>Figures 1, 2</i>)	Ind'I		3.5	5.0	
IPP	VPP Supply Current	V _{PP} = V _{CC}	·			10	
VPP	V _{PP} Read Voltage			V _{CC} -0.7		V _{CC} + 0.7	
1 _{LI}	Input Load Current	$V_{IN} = 5.5V \text{ or GND}$		-1		1	
1LO	Output Leakage Current	$V_{OUT} = 5.5V \text{ or GND}$		-10		10	

AC Electrical Characteristics Over Operating Range with $V_{PP} = V_{CC}$

Symbol	Parameter	170		200		250		Units
	i arameter	Min	Max	Min	Max	Min	Max	Unita
tACC	Address to Output Delay		170		200		250	
t _{CE}	CE to Output Delay		170		200		250	
tOE	OE to Output Delay		75		75		100	ns
t _{DF} (Note 2)	Output Disable to Output Float		60		60		60	115
^t OH (Note 2)	Output Hold from Addresses, CE or OE, whichever Occurred First		0		0		0	

NM27LC256

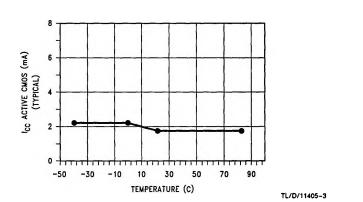
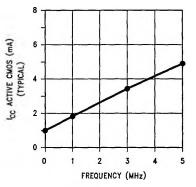



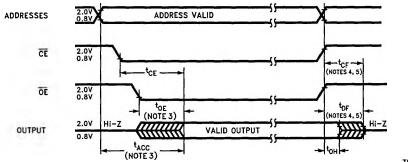
FIGURE 1. I_{CC}_ACTIVE_CMOS vs Temperature V_{CC} = V_P = 5.0V, Frequency 1 MHz

TL/D/11405-4

Capacitance $T_A = +25^{\circ}C$, 1 = 1 MHz (Note 2)

Symbol	Parameter	Conditions	Тур	Max	Units
CIN	Input Capacitance	$V_{IN} = 0V$	6	12	рF
COUT	Output Capacitance	V _{OUT} = 0V	9	12	рF

AC Test Conditions


Output Load

1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8) $\leq 5 \text{ ns}$

Input Pulse Level	0.45V to 2.4V
Timing Measurement Level (Note 10)	(Note 10)
Inputs	0.8V to 2V
Outputs	0.8V to 2V

Input Pulse Levels

AC Waveforms (Notes 6, 7, and 9)

TL/D/11405-5

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: This parameter is only sampled and is not 100% tested.

Note 3: \overline{OE} may be delayed up to $t_{ACC} - t_{CE}$ after the falling edge of \overline{CE} without impacting t_{ACC} .

Note 4: The $T_{\mbox{DF}}$ and $T_{\mbox{CF}}$ compare level is determined as follows:

High to TRI-STATE®, the measure V_{CH1} (DC) - 0.10V;

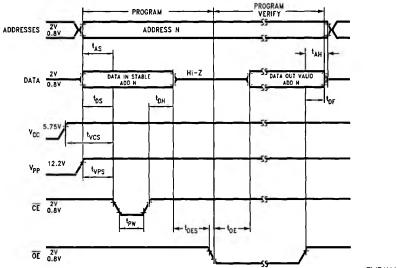
Low to TRI-STATE, the measure VOL1 (DC) + 0.10V.

Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} .

Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at last a 0.2 µF ceramic capacitor be used on every device between V_{CC} and GND.

Note 7: The outputs must be restricted to V_{CC} + 1.0V to avoid latch-up and device damage.

Note 8: 1 TTL Gate: $I_{OL} = 1.6$ mA, $I_{OH} = -400 \mu$ A, CL: 100 pF includes fixture capacitance.


Note 9: VPP may be connected to VCC except during programming.

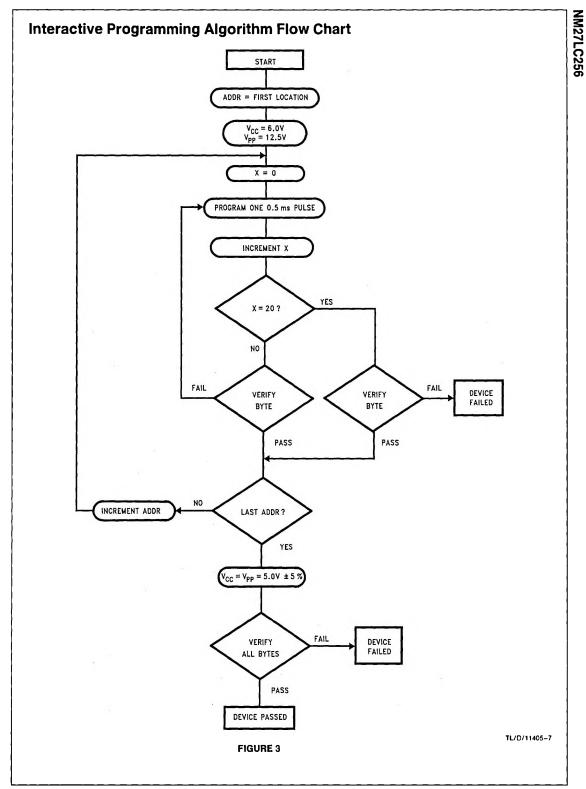
Note 10: Inputs and outputs can undershoot to -2.0V for 20 ns Max.

Note 11: CMOS inputs V_{IL} = GND $\pm 0.3V$, V_{IH} = V_{CC} $\pm 0.3V$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{AS}	Address Setup Time		2			μs
toes	OE Setup Time		2			μs
t _{DS}	Data Setup Time		2			μs
typs	V _{PP} Setup Time		2			μs
tvcs	V _{CC} Setup Time		2			μs
t _{AH}	Address Hold Time		0			μs
t _{DH}	Data Hold Time		2			μs
t _{DF}	Output Enable to Output Float Delay	$\overline{CE}/\overline{PGM} = V_{IL}$	0		130	ns
tpw	Program Pulse Width		0.45	0.5	0.55	ms
10E	Data Valid from OE	$\overline{CE}/\overline{PGM} = V_{IL}$			150	ns
IPP	V _{PP} Supply Current during Programming Pulse	$\overline{CE}/\overline{PGM} = V_{IL}$			30	mA
lcc	V _{CC} Supply Current				10	mA
T _A	Temperature Ambient		20	25	30	°C
V _{CC}	Power Supply Voltage		5.75	6.0	6.25	v
V _{PP}	Programming Supply Voltage		12.2	13.0	13.3	v
t _{FR}	Input Rise, Fall Time	-	5			ns
VIL	Input Low Voltage			0.0	0.45	v
V _{IH}	Input High Voltage		2.4	4.0		v
t _{IN}	Input Timing Reference Voltage		0.8		2.0	v
tout	Output Timing Reference Voltage		0.8		2.0	v

Programming Waveforms (Note 3)

TL/D/11405-6


Note 1: National's standard product warranty applies to devices programmed to specifications described herein.

Note 2: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}. The EPROM must not be inserted into or removed from a board with voltage applied to V_{PP} or V_{CC}.

Note 3: The maximum absolute allowable voltage which may be applied to the V_{PP} pin during programming is 14V. Care must be taken when switching the spurious V_{PP} voltage transients which may damage the device.

Note 4: Programming and program verify are tested with the Interactive Program Algorithm, at typical power supply voltages and timings.

Note 5: During power up the PGM pin must be brought high (\ge V_{IH}) either coincident with or before power is applied to V_{PP}.

Functional Description

DEVICE OPERATION

The six modes of operation of the EPROM are listed in Table I. It should be noted that all inputs for the six modes are at TTL levels. The power supplies required are V_{CC} and V_{PP} . The V_{PP} power supply must be at 13.0V during the three programming modes, and must be at 5V in the other three modes. The V_{CC} power supply must be at 6.0V during the three programming modes, and at 5V in the other three modes.

Read Mode

The EPROM has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output trins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from CE to output (t_{CE}). Data is available at the outputs t_{OE} after the falling edge of OE, assuming that CE has been low and addresses have been stable for at least t_{ACC}-t_{OE}.

The sense amps are clocked for fast access time. V_{CC} should therefore be maintained at operating voltage during read and verify. If V_{CC} temporarily drops below the spec. voltage (but not to ground) an address transition must be performed after the drop to ensure proper output data.

Standby Mode

The EPROM has a standby mode which reduces the active power dissipation by over 97%, from 24.75 mW to 0.55 mW. The EPROM is placed in the standby mode by applying a CMOS high signal to the $\overline{\text{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

Output Disable

The EPROM is placed in output disable by applying a TTL high signal to the OE input. When in output disable all circuitry is enabled, except the outputs are in a high impedance state (TRI-STATE).

Output OR-Tying

Because the EPROM is usually used in larger memory arrays, National has provided a 2-line control function that accommodates this use of multiple memory connections. The 2-line control function allows for:

a) the lowest possible memory power dissipation, and

b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overrightarrow{CE} be decoded and used as the primary device selecting function, while \overrightarrow{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming; Interactive Algorithm

CAUTION: Exceeding 14V on pin 1 (VPP) will damage the EPROM.

Initially, and after each erasure, all bits of the EPROM are in the "1's" state. Data is introduced by selectively programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The EPROM is in the programming mode when the Vpp power supply is at 13.0V and \overline{OE} is at V_{IH}. It is required that at least a 0.1 μ F capacitor be placed across Vpp, V_{CC} to ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, an active low, TTL program pulse is applied to the \overline{CE} input. A program pulse must be applied at each address location to be programmed. The EPROM is programmed with the Interactive Programming Algorithm shown in *Figure 3*. Each Address is programmed with a series of 500 μ s pulses until it verifies good, up to a maximum of 20 pulses. Most memory cells will program with a single 500 μ s pulse.

The EPROM must not be programmed with a DC signal applied to the \overline{CE} input.

Programming multiple EPROM in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the parallel EPROM may be connected together when they are programmed with the same data. A low level TTL pulse applied to the CE input programs the paralleled EPROM.

Program Inhibit

Programming multiple EPROMs in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs (including \overline{OE}) of the parallel EPROMs may be common. A TTL low level program pulse applied to an EPROMs \overline{CE} input with Vpp at 13.0V will program that EPROM. A TTL high level $\overline{CE}/\overline{PGM}$ input inhibits the other EPROM from being programmed.

TABLE	I. Modes	Selection

Pins	CE/PGM	ŌE	VPP	Vcc	Outputs	
Mode			• PP	••••		
Read	VIL	VIL	V _{CC}	5.0V	Dout	
Output Disable	X (Note 1)	VIH	v _{cc}	5.0V	High Z	
Standby	VIH	x	V _{CC}	5.0V	High Z	
Programming	VIL	x	12.75V	6.25V	D _{IN}	
Program Verify	x	VIL	12.75V	12.75V	DOUT	
Program Inhibit	VIH	VIH	12.75V	6.25V	High Z	

Functional Description (Continued)

Program Verify

A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify may be performed with V_{PP} at 13.0V. V_{PP} must be at V_{CC}, except during programming and program verify.

AFTER PROGRAMMING

Opaque labels should be placed over the EPROM window to prevent unintentional erasure. Covering the window will also prevent temporary functional failure due to the generation of photo currents.

MANUFACTURER'S IDENTIFICATION CODE

The EPROM has a manufacturer's identification code to aid in programming. When the device is inserted in an EPROM programmer socket, the programmer reads the code and then automatically calls up the specific programming algorithm for the part. This automatic programming control is only possible with programmers which have the capability of reading the code.

The Manufacturer's Identification code, shown in Table II, specifically identifies the manufacturer and device type. The code for NM27LC256 is "8FC4", where "8F" designates that it is made by National Semiconductor, and "C4" designates a 256k (32k8) part.

The code is accessed by applying 12V ±0.5V to address pin A9. Addresses A1-A8, A10-A16, and all control pins are held at V_{IH}. Address pin A0 is held at V_{IL} for the manufacturer's code, and held at V_{IH} for the device code. The code is read on the eight data pins, O₀-O₇. Proper code access is only guaranteed at 25°C to ±5°C.

ERASURE CHARACTERISTICS

The erasure characteristics of the device are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the $3000\text{\AA}-4000\text{\AA}$ range. The recommended erasure procedure for the EPROM is exposure to short wave ultraviolet light which has a wavelength of 2537Å. The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of 15W-sec/cm².

The EPROM should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

An erasure system should be calibrated periodically. The distance from lamp to device should be maintained at one inch. The erasure time increases as the square of the distance from the lamp. (If distance is doubled the erasure time increases by factor of 4.) Lamps lose intensity as they age. When a lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem.

SYSTEM CONSIDERATION

The power switching characteristic of EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer: the standby current level, the active current level, and the transient current peaks that are produced by voltage transitions on input pins. The magnitude of these transient current peaks is dependent of the output capacitance loading of the device. The associated V_{CC} transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between V_{CC} and GND. This should be a high frequency capacitor of low inherent inductance. In addition, at least a 4.7 µF bulk electrolytic capacitor should be used between V_{CC} and GND for each eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of the PC board traces.

Pins	A0 (10)	A9 (24)	07 (19)	O6 (18)	05 (17)	O4 (16)	O3 (15)	O2 (13)	01 (12)	00 (11)	Hex Data
Manufacturer Code	VIL	12V	1	0	0	0	1	1	1	1	8F
Device Code	VIH	12V	0	0	0	0	0	1	0	0	C4

TABLE II. Manufacturer's Identification Code