

- MX7530 - 16 lead package, MX7531- 18 lead package
** Maxim reserves the right to ship Ceramic packages in lieu
Ordering information continued on last page.

MAXIM
Maxim Integrated Products 1
Call toll free 1-800-998-8800 for free samples or literature.

CMOS 10 and 12 Bit

Multiplying D/A Converters

MX7530/31

ABSOLUTE MAXIMUM RATINGS

$\left(T_{A}=+25^{\circ} \mathrm{C}, V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {OUT } 2}=\mathrm{GND}\right.$, unless otherwise specified

Note 1: Vout12 may exceed the Absolute Maximum voltage if the current is limited to 30 mA or less.
Note 2: Full Scale Range is 10 V for unipolar mode and $\pm 10 \mathrm{~V}$ for bipolar mode.
Note 3: Guaranteed by design, but not 100% tested.
Note 3: Guaranteed by design, but not 100% tested.
Note 4: To minimize feedthrough with the ceramic package, the metal lid must be grounded. If the lid is not grounded, then the feedthrough is
10 mV typical and 30 mV maximum.
2 \qquad

Detailed Description
The basic MX7530/31 DAC circuit consists of a lasertrimmed, thin-film R-2R resistor array with CMOS current switches as shown in Figure 1. Binarily weighted currents are switched to either OUT1 o OUT2 depending on the status of each input bit. Most applications require only an output op-amp and refernce source. The ReF and accepts a wide voltage or xed and time varying voltage or urrent inputs.

Figure 2. Unipolar Binary Operation (2-Quadrant Multiplication)
Table 1: Code Table. (MX7530) -
Unipolar Binary Operation

digital input										ANALOG OUTPUT
1	1	11	1	1	1	1	1	$\cdot 1$		$-V_{\text {REF }}\left(1-2^{-10}\right)$
1	0	0	0	0	0	0	0			$-V_{\text {REF }}\left(1 / 2+2^{-10}\right)$
1	0	0	0	0	0	0	0	0		$-V_{\text {fEF } / 2}$
0	1	11		1	1	1	1	1		$-V_{\text {REF }}\left(1 / 2-2^{-10}\right)$
0	0	0	0	0	0	0	0	1		$-V_{\text {REF }}\left(2^{-10}\right)$
0	0	0	0	0	0	0	0			0

Unipolar Operation

The most common configuration for the MX7530/31 is The most common configuration for the MX7530/31 is shown in Figure 2. The circuit is used for unipola
binary operation and/or 2-quadrant multiplication. R1 can be used for gain adjustment if desired, if not, R1 and R2 can be omitted. The code table for unipola peration is given in Table 1. Note that the outpu polarity is the inverse of the reference input.
A compensation capacitor, C1, may be needed when the DAC is used with a high speed amplifier. The purpose of the capacitor is to cancel the pole formed by the DAC's output capacitance and internal feedbac istanc. used but typically ranges from 10 to 50 pF .
The output op-amp's offset voltage can degrade the inearity of the DAC by causing OUT1 to be terminated at a non-zero voltage. The resulting linearity error is mplifier such as the MAX400 should be used or the amplifier such as the MAX400 should be used, or the than $1 / 10$ of an LSB's value. The op-amp's input bias current (I_{B}) can also limit performance since $\mathrm{I}_{\mathrm{B}} \times \mathrm{R}_{\mathrm{FB}}$ generates an offset error as well. IB should therefore be much less than the DAC's output current for 1 LSB which is typically $1 \mu \mathrm{~A}$ for the $\mathrm{M} \times 7530$ and 250 nA for the MX753

Figure 3. Bipolar Operation (4-Quadrant Multiplicaiton)
Table 2: Code Table (MX7530) -
Bipolar (Offset Binary) Operation

CMOS 10 and 12 Bit

Multiplying D/A Converters

Bipolar Operation
Bipolar, or four-quadrant, operation is shown in figure 3. A second amplifier and three matched resistors are equired. The output vs. code table is listed in Table the remaining bits control amplitude. To adjust the circuit, load the DAC with a code of 1000
00000000 and trim R1 for a 0 V output. With R1 and R2 00000000 and trim R1 for a 0 V output. With R1 and R2
omitted, an alternative zero trim is to adjust the ratio of omitted, an alternative zero trim is to adjust the ratio o
R3 and R4 for OV out. Full scale can be trimmed by loading the DAC with all "zeros" or all "ones" and adjusting the amplitude of $V_{\text {REF }}$ or varying R5 until the desired positive or negative output is obtained. The op-amp recommendations made in the Unipolar Operation section apply for bipolar operation as well.

Figure 4. Single Operation Using Voltage Mode
\qquad

Voltage Mode (Single Supply)
The M $\mathbf{7 5 3 0}$ is connected as a voltage output DAC in Figure 4. OUT1 is connected to the reference input and voltage source with a constant output resistance of $\mathrm{R}_{\text {ladder }}$ (nominally $10 \mathrm{k} \Omega$). This outptut is usually buffered with an op-amp
An advantage of voltage mode operation is single supply operation for the complete circuit, i.e. a negative reference is not required for a positive output. It is important to note that the range of the reference is restricted in voltage mode. The reference input (voltage at OUT1) must always be positive and is limited to no more than +3.5 V when $\mathrm{V}_{D D}$ is +15 V . If the reference voltage is greater than +3.5 V , or $V_{D D}$ is reduced, linearity is degraded.

Dynamic Considerations

In static or DC applications, the AC characteristics of In static or DC applications, the AC characteristics of
the output amplifier are not critical. In higher speed the output amplifier are not critical. In higher speed
applications, where either the reference input is an AC signal or the DAC output must quickly settle to a new programmed value, the AC parameters of the output op-amp must be considered.
A common error source in dymamic applications is parasitic coupling of signal from the VREF terminal to OUT1 or OUT2. This is normally a function of board layout and package lead-to-lead capacitance. Signals can also be injected into the DAC outputs when the dependent on circuit board layout and on-chip capacitive coupling. Layout induced feedthrough from $V_{\text {REF }}$ and the digital inputs can be minimized with guard traces to isolate the digital inputs, $V_{\text {REF }}$, and the DAC outputs.
_ Ordering Information (continued)

PART	TEMP. RANGE	PaCkage*	ERROR
MX7531JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	0.2\%
MX7531KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	0.1\%
Mx7531LN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	0.05\%
Mx7531JCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outine	0.2\%
MX7531KCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	0.1\%
Mx7531LCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outiline	0.05\%
M $\times 7531 \mathrm{~J} / \mathrm{D}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	0.2\%
MX7531JD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	0.2\%
M $\times 7531 \mathrm{KD}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	0.1\%
M $\times 7531 \mathrm{LD}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	0.05\%
MX7531JO	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	0.2\%
M $\times 7531 \mathrm{KQ}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	0.1\%
M $\times 7531 \mathrm{LO}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	0.05\%

Maxim cannot assume responsibitity for use of any circuitry other than circuitry entirely embodied
implied Maxim reserves the right to change the circuitry and specifications without notice at any time.
4 ___ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
(c) 1995 Maxim Integrated Products Printed USA

