OKI Semiconductor

MSM58321

REAL TIME CLOCK/CALENDAR

DESCRIPTION

The MSM 58321 is a metal gate CMOS Real Time Clock/Calendar with a battery backup function for use in bus-oriented microprocessor applications.

The 4-bit bidirectional bus line method is used for the data I/O circuit; the clock is set, corrected, or read by accessing the memory.

The time is read with 4-bit DATA I/O, ADDRESS WRITE, READ, and BUSY; it is written with 4-bit DATA I/O, ADDRESS WRITE, WRITE, and BUSY.

FEATURES

- 7 Function-Second, Minute, Hour, Day, Day-of-Week, Month, Year
- Automatic leap year calender
- 12/24 hour format
- Frequency divider 5-poststage reset
- Reference signal output
- 32.768 kHz crystal controlled operation
- Single 5V power supply
- Back-up battery operation to VDD $=2.2 \mathrm{~V}$
- Low power dissipation
$90 \mu \mathrm{~W}$ max. at V DD $=3 \mathrm{~V}$
2.5 mW max. at $\mathrm{VDD}=5 \mathrm{~V}$
- 16 pin plastic DIP (DIP 16-P-300)

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

16 pin Plastic DIP (top View)		
$\mathrm{CS}_{2} \quad 1$	16	$V_{D D}$
WRITE 2	15	XT
READ 3	14	$\overline{\mathrm{XT}}$
$D_{0} \quad 4$	13	CS_{1}
$\mathrm{D}_{1} \quad 5$	12	TEST
$\mathrm{D}_{2} \quad 6$	11	STOP
$\mathrm{D}_{3} \quad 7$	10	$\overline{\text { BUSY }}$
GND 8	9	ADDRE

REGISTER TABLE

Address	Address input				Register Name	Data input/ output				Count value	Remarks			
	$\begin{gathered} \mathrm{D}_{0} \\ \left(\mathrm{~A}_{0}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}_{1} \\ \left(\mathrm{~A}_{1}\right) \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ \left(\mathrm{~A}_{2}\right) \end{gathered}$	$\begin{gathered} D_{3} \\ \left(A_{3}\right) \end{gathered}$		D_{0}	D_{1}	D_{2}	D_{3}					
0	0	0	0	0	S_{1}	*	*	*	*	0 to 9				
1	1	0	0	0	S_{10}	*	*	*		0 to 5				
2	0	1	0	0	Ml_{1}	*	*	*	*	0 to 9				
3	1	1	0	0	Ml_{10}	*	*	*		0 to 5				
4	0	0	1	0	H_{1}	*	*	*	*	0 to 9				
5	1	0	1	0	H_{10}	*	*	*	\star	0~1 or 0~2	D2 $=1$ specifies PM, D2 $=0$ specifies AM, D3 $=1$ specifies 24 -hour timer, and D3 $=0$ specifies 12 -hour timer. When $\mathrm{D} 3=1$ is written, the D 2 bit is reset inside the IC.			
6	0	1	1	0	W	*	*	*		0 to 6				
7	1	1	1	0	D_{1}	*	*	*	*	0 to 9				
8	0	0	0	1	D_{10}	*	*	©	\bigcirc	0 to 3	The D2 and D3 bits in D10 are used to select a leap year.			
9	1	0	0	1	MO_{1}	*	*	*	*	0 to 9	Calendar	$\mathrm{D}_{2} \mathrm{D}_{3}$	D_{3}	Remainder obtained by dividing the year number by 4
A	0	1	0	1	MO_{10}	*				0 to 1	Gregorian calendar	0	0	0
B	1	1	0	1	Y_{1}	*	*	*	*	0 to 9		1	0	3
C	0	0	1	1	Y_{10}	*	*	*	*	0 to 9		1	1	1
D	1	0	1	1							A selector to reset 5 poststages in the $1 / 2^{15}$ frequency divider and the BUSY circuit. They are reset when this code is latched with ADDRESS LATCH and the WRITE input goes to 1.			
E~F	0/1	1	1	1							A selector to obtain reference signal output. Reference signals are output to D0 - D3 when this code is latched with ADDRESS LATCH and READ input goes to 1.			

Note: (1) There are no bits in blank fields for data input/output. 0 signals are output by reading and data is not stored by writing because there are no bits.
(2) The bit with marked ${ }^{\star}$ is used to select the $12 / 24$-hour timer and the bits marked ${ }^{\circledast}$ are used to select a leap year. These three bits can be read or written.
(3) When signals are input to bus lines DO - D3 and ADDRESS WRITE goes to 1 for address input, ADDRESS information is latched with ADDRESS LATCH.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Rating	Symbol	Condition	Value	Unit
Power voltage	V_{DD}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to 6.5	V
Input voltage	V_{1}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	V_{0}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	-55 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions

Rating	Symbol	Condition	Value	Unit
Power voltage	Vod	-	4.5 to 6	V
Date hold voltage	VoH	-	2.2 to 6	V
Crystal frequency	$f(\mathrm{XT})$	-	32.768	kHz
Operating temperature	Top	-	-30 to +85	${ }^{\circ} \mathrm{C}$

Note: The data hold voltage guarantees the clock operations, though it does not guarantee operations outside the IC and data input/output.

DC Characteristics

$$
\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-30 \sim+85^{\circ} \mathrm{C}\right)
$$

Rating	Symbol	Condition	Min.	Typ.	Max.	Unit
H input voltage	$\mathrm{V}_{\mathrm{H} 1}$	- Note 1	3.6	-	-	V
	$\mathrm{V}_{\text {H2 }}$	- Note 2	$\mathrm{V}_{\mathrm{DD}}-0.5$	-	-	
L input voltage	VIL	-	-	-	0.8	V
L output voltage	VoL	$10=1.6 \mathrm{~mA}$	-	-	0.4	V
L output current	loL	$\mathrm{V} 0=0.4 \mathrm{~V}$	1.6	-	-	mA
H input current	l_{1+1}	V I $=$ Vdo Note3	10	30	80	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathbf{H} 2}$	$V_{I}=V_{\text {do }}$ Note4	-	-	1	
L input current	$1 / 1$	V = 0 V	-	-	-1	$\mu \mathrm{A}$
Input capacity	C_{1}	$f=1 \mathrm{MHz}$	-	5	-	pF
Current consumption	IDD	$\begin{gathered} f=32.768 \mathrm{kHz} \\ \mathrm{VDD}=5 \mathrm{~V} / \mathrm{VDD}=3 \mathrm{~V} \end{gathered}$	-	100/15	500/30	$\mu \mathrm{A}$

Note: 1. CS $_{2}$, WRITE, READ, ADDRESS WRITE, STOP, TEST, $D_{0} \sim D_{3}$
2. CS_{1}
3. CS $_{1}$, CS $_{2}$, WRITE, READ, ADDRESS WRITE, STOP, TEST
4. $D_{0} \sim D_{3}$

Switching Characteristics

(1) WRITE mode
$\left(\mathrm{V} D \mathrm{DD}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Condition	Min.	Typ.	Max.	Unit
CS setup time	t_{CS}	-	0	-	-	$\mu \mathrm{s}$
CS hold time	t_{CH}	-	0	-	-	$\mu \mathrm{s}$
Address setup time	t_{AS}	-	0	-	-	$\mu \mathrm{s}$
Address write pulse width	t_{AW}	-	0.5	-	-	$\mu \mathrm{s}$
Address hold time	t_{AH}	-	0.1	-	-	$\mu \mathrm{s}$
Data setup time	t_{DS}	-	0	-	-	$\mu \mathrm{s}$
Write pulse width	t_{WW}	t_{DH}	-	2	-	-
Data hold time	-	0	-	-	$\mu \mathrm{s}$	

CS1
CS2
D0~D3
(ADDRESS/DATA)
ADDRESS WRITE

Write Cycle

Note: ADDRESS WRITE and WRITE inputs are activated by the level, not by the edge.
(2) READ mode

$$
\left(V_{D D}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Rating	Symbol	Condition	Min.	Typ.	Max.	Unit
CS setup time	t_{CS}	-	0	-	-	$\mu \mathrm{s}$
CS hold time	t_{CH}	-	0	-	-	$\mu \mathrm{s}$
Address setup time	t_{AS}	-	0	-	-	$\mu \mathrm{s}$
Address write pulse width	t_{AW}	-	0.5	-	-	$\mu \mathrm{s}$
Address hold time	t_{AH}	-	0.1	-	-	$\mu \mathrm{s}$
Read access time	t_{RA}	-	-	-	see Note 1	$\mu \mathrm{~s}$
Read delay time	t_{DD}	-	-	-	1	$\mu \mathrm{~s}$
Read inhibit time	t_{RI}	-	0	-	-	$\mu \mathrm{s}$

Note 1. $t_{R A}=1 \mu \mathrm{~S}+\mathrm{CR} \ln \left(\frac{V_{D D}}{V_{D D}-V_{I H} \min }\right)$

Note: ADDRESS WRITE and READ inputs are activated by the level, not by the edge.

(3) WRITE \& READ mode

$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Condition	Min.	Typ.	Max.	Unit
CS setup time	t_{CS}	-	0	-	-	$\mu \mathrm{s}$
CS hold time	t_{CH}	-	0	-	-	$\mu \mathrm{s}$
Address setup time	t_{AS}	-	0	-	-	$\mu \mathrm{s}$
Address write pulse width	t_{AW}	-	0.5	-	-	$\mu \mathrm{s}$
Address hold time	t_{AH}	-	0.1	-	-	$\mu \mathrm{s}$
Data setup time	t_{DS}	-	0	-	-	$\mu \mathrm{s}$
Write pulse width	$\mathrm{t}_{W W}$	-	2	-	-	$\mu \mathrm{s}$
Data hold time	t_{DH}	-	0	-	-	$\mu \mathrm{s}$
Read access time	t_{RA}	-	-	-	see Note 1	$\mu \mathrm{~s}$
Read delay time	t_{DD}	-	-	-	1	$\mu \mathrm{~s}$
Read inhibit time	t_{RI}	-	0	-	-	$\mu \mathrm{s}$

Note 1. $\quad t_{R A}=1 \mu \mathrm{~s}+\mathrm{CR} \ln \left(\frac{V_{D D}}{V_{D D}-V_{I H} \min }\right)$

PIN DESCRIPTION

| Name | Pin No. | Description |
| :---: | :---: | :--- | :--- |
| CS_{2} | 1 | Chip select pins. These pins enable the interface with the external circuit when
 both of these pins are set at H level simultaneously. |
| CS_{1} | 13 | If one of these pins is set at L level, STOP, TEST, WRITE, READ, ADDRESS
 WRITE pins and $\mathrm{D}_{0} \sim \mathrm{D}_{3}$ pins are inactivated.
 Since the threshold voltage VT for the CS pin is higher than that for other pins,
 it shuold be connected to the detector of power circuit and peripherals and CS 2
 is to be connected to the microcontroller. |
| WRITE | WRITE pin is used to write data; it is activated when it is at the H level. Data bus
 data inside the IC is loaded to the object digit while this WRITE pin is at the H
 level, not at the WRITE input edge. Refer to Figure 1 below. | |

Figure 1

Name	Pin No.	Description
READ	3	READ pin is used to read data; it is activated when it is at the H level. Address contents are latched with ADDRESS LATCH inside the IC at the $D_{0} \sim D_{3}$ and ADDRESS WRITE pins to select the object digit, then an H-level signal is input to the READ pin to read data. If a count operation is continued by setting the STOP input to the L level, read operation must be performed, in principle, while the BUSY output is at the H level. While the $\overline{B U S Y}$ output is at the L level, count operations are performed by digit counters and read data is not guaranteed, therefore, read operations are inhibited in this period. Figure 2 shows a time chart of the BUSY output, 1 Hz signal inside the IC, and READ input. A read operation is stopped temporarily within a period of $244 \mu \mathrm{~s}$ from the $\overline{\text { BUSY }}$ output trailing edge and it is restarted when the $\overline{\text { BUSY }}$ output goes to the H level again.
		Read operation is enabled in this period: however, it is used for program switching.

Figure 2

If the counter operation is stopped by setting the STOP input to the H level, read operations are enabled regardless of the BUSY output.
A read operation is enabled by microcomputer software regardless of the BUSY output during the counter operation by setting the STOP input to the L level. In this method, read operations are performed two or more times continuously and data that matches twice is used as guaranteed data.

Name	Pin No.	Description
$\mathrm{D}_{0} \sim \mathrm{D}_{3}$	4~7	Data input/output pins. (Bidirectional bus). The output is a open-drain type and $4.7 \mathrm{k} \Omega \sim 10 \mathrm{k} \Omega$ pull-up registers are required utilize these pins as output pins.
GND	8	Ground pin.
ADDRESS WRITE	9	ADDRESS WRITE pin is used to load address information from the $D_{0} \sim D_{3} I / 0$ bus pins to the ADDRESS LATCH inside the IC; it is activated when it is at the H level. This input is activated by the level, not by the edge. Figure 3 shows the relationships between the D_{0} address input, ADDRESS WRITE input, and ADDRESS LATCH input/output.

Figure 3
$\overline{B U S Y}$ pin outputs the IC operation state. It is N-channel MOSFET open-drain output. An external pull-up resistor of $4.6 \mathrm{k} \Omega$ or more must be connected (see Figure 4) to use the BUSY output. The signals are output in negative logics. If the oscillator oscillates at 32.768 kHz , the frequency is always 1 Hz regardless of the CS1 and CS2 unless the D output of the ADDRESS DECODER inside the IC is $\mathrm{H}(\mathrm{CODE}=\mathrm{H} \bullet \mathrm{L} \cdot \mathrm{H} \cdot \mathrm{H})$ and CS1 $=\mathrm{CS} 2=$ WRITE $=\mathrm{H}$.
Figure 5 shows the BUSY output time chart.

Figure 4

Figure 5

Figure 6

A digit is counted up at the leading edge (changing point from L to H) of a TEST pin input pulse. The pulse condition for TEST pin input at $V_{D D}=5 \mathrm{~V} \pm 5 \%$ is described in Figure 7 below.

Figure 7

Name	Pin No.	Description
$\overline{\text { XT }}$	14	Oscillator pin. A 32.768 kHz crystal oscillator, capacitor and trim capacitor for frequency adjustment are to be connected as shown in Figure 8 below. X-TAL 32.768 kHz , The crystal impedance is $30 \mathrm{k} \Omega$ or less.
XT	15	

Figure 8

If an external clock is to be used for MSM58321's oscillation source, the external clock is to be input to XT , while $\overline{\mathrm{XT}}$ should be left open. Refer to the Figure 9 below.

Figure 9

Power supply pin. Refer to the application circuit.

REFERENCE SIGNAL OUTPUT

Reference signals are output from the $D_{0} \sim D_{3}$ pins under the following conditions:

Conditions	Output pin	Reference signal frequency	Pulse width	Output logic
WRITE $=\mathrm{L}$	D_{0}	1024 Hz	$488.3 \mu \mathrm{~s}$	Pisitive logic
READ $=\mathrm{H}$	D_{1}	1 Hz	$122.1 \mu \mathrm{~s}$	Negative logic
$\mathrm{CS} 1=\mathrm{CS} 2=\mathrm{H}$	D_{2}	$1 / 60 \mathrm{~Hz}$	$122.1 \mu \mathrm{~s}$	Negative logic
ADDRESS $=\mathrm{E}$ or F	D_{3}	$1 / 3600 \mathrm{~Hz}$	$122.1 \mu \mathrm{~s}$	Netgative logic

$$
\begin{aligned}
& 122.1 \mu \mathrm{~s}=\frac{10^{-3}}{32,768} \times 4 \\
& 488.3 \mu \mathrm{~s}=\frac{10^{-3}}{32,768} \times 16
\end{aligned}
$$

Figure 10

APPLICATION NOTES

WRITE and STOP

Note that the timing relationship between the STOP and WRITE inputs vary by the related digit when counting is stopped by the STOP input to write data. The time ($\mathrm{t}_{\text {sh }}$) between the STOP input leading edge and WRITE input trailing edge for each digit is limited to the minimum value. (See Figure 11)

Write-inhibited period

Figure 11
$\mathrm{t}_{\mathrm{SHS} 1}=1 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{SHS} 10}=2 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{SHM}}=3 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{SHM} 10}=4 \mu \mathrm{~S}, \mathrm{t}_{\mathrm{SH} H 1}=5 \mu \mathrm{~s}$
tshH10 $=6 \mu \mathrm{~s}$, tshD $=7 \mu \mathrm{~s}$, tsHw $=7 \mu \mathrm{~s}$, tshD10 $=8 \mu \mathrm{~s}$, tshm01 $=9 \mu \mathrm{~s}$
$\mathrm{t}_{\text {SHMO10 }}=10 \mu \mathrm{~s}, \mathrm{t}_{\text {SHY }}=11 \mu \mathrm{~s}, \mathrm{t}_{\text {SHY }}=12 \mu \mathrm{~s}$.

If a count operation is continued by setting the STOP input to the L level, write operation must be performed, in principle, while the $\overline{B U S Y}$ output is at the H level. While the $\overline{\mathrm{BUSY}}$ output is at the L level, count operations are performed by the digit counters and write operation is inhibited, but there is a marginal period of $244 \mu \mathrm{~s}$ from the $\overline{B U S Y}$ output trailing edge. If the $\overline{B U S Y}$ output goes to the L level during a write operation, the write operation is stopped temporarily within $244 \mu \mathrm{~s}$ and it is restarted when the $\overline{\mathrm{BUSY}}$ output goes to the H level again. Figure 12 shows a time chart of BUSY output, 1 Hz signal inside the IC, and WRITE input.

Figure 12

Frequency divider and BUSY circuit reset

If $\mathrm{AO} \sim \mathrm{A} 3=\mathrm{H} \bullet\llcorner\cdot \mathrm{H} \bullet \mathrm{H}$ is input to ADDRESS DECODER, the DECODER output (D) goes to the H level. If $\mathrm{CS} 1=\mathrm{CS} 2=$ H and WRITE $=\mathrm{H}$ in this state, the 5 poststage in the 15-stage frequency divider and the $\overline{\text { BUSY }}$ circuit are reset.

In this period, the BUSY output remains at the H level and the 1 Hz signal inside the IC remains at the L level, and counting is stopped. If this reset is inactivated while the oscillator operates, the BUSY output goes to the L level after $1000.1221 \pm 31.25 \mathrm{~ms}$ and the 1 Hz signal inside the IC goes to the H level after $1000.3663 \pm 31.25 \mathrm{~ms}$. These times are not the same because the first ten stages in the 15 -stage frequency divider are not reset. (See Figure 13)

Figure 13

Selection of leap year

This IC is designed to select leap year automatically.
Four types of leap years can be selected by writing a select signal in the D2 and D3 bits of the D10 digit (CODE $=$ $L \cdot L \cdot L \cdot H)$. (See table 1 for the functions.)

Gregorian calendar or other calendars can be set arbitrarily in the Y1 and Y10 digits of this IC. There is a leap year every four years and the year number varies according to the calendar used. There are four combinations of year numbers and leap years. (See the Table below).

No. 1: Gregorian calendar year. The remainder obtained by dividing the leap year number by 4 is 0 .
No. 2: The remainder obtained by dividing the leap year number by 4 is 3 .
No. 3: The remainder obtained by dividing the leap year number by 4 is 2 .
No. 4: The remainder obtained by dividing the leap year number by 4 is 1 .

No. 1	Calendar	D10 digit		Remainder obtained by dividing the leap year number by 4	Leap years (examples)
		D2	D3		
1	Gregorian	L	L	0	$\begin{aligned} & 1980,1984,1988,1992 \\ & 1996,2000,2004 \end{aligned}$
2		H	L	3	$\begin{aligned} & (83)(87)(91)(95)(99) \\ & 55,59,63,67,71, \\ & 75,79 \end{aligned}$
3		L	H	2	$\begin{aligned} & 82,86,90,94,98, \\ & 102,106 \end{aligned}$
4		H	H	1	$\begin{aligned} & 81,85,89,93,97, \\ & 101,105 \end{aligned}$

APPLICATION EXAMPLE - POWER SUPPLY CIRCUIT

a)

b)

c)

$1.5 \times 2=3 V$
Dry cell

Note: Use the same diodes for D1 and D2 to reduce the level difference between +5 V and V_{DD} of the MSM58321.

