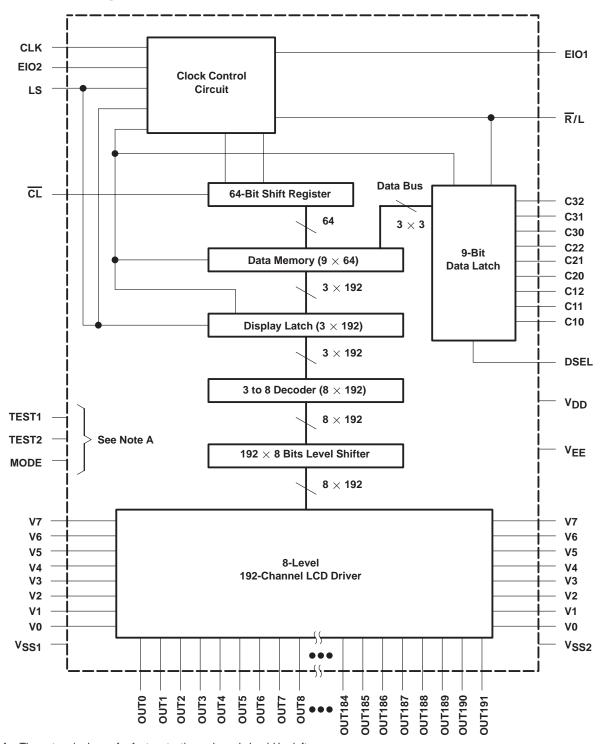

- Column (Source) Driver
- V_{EE} of 14 V to 18 V for LCD Driving
- 192 Channel Outputs
- Data Bus With 3 x 3 (RGB) Bits
- 512 Colors (8 Gray Scale)
- 15-MHz Data Transfer Clock

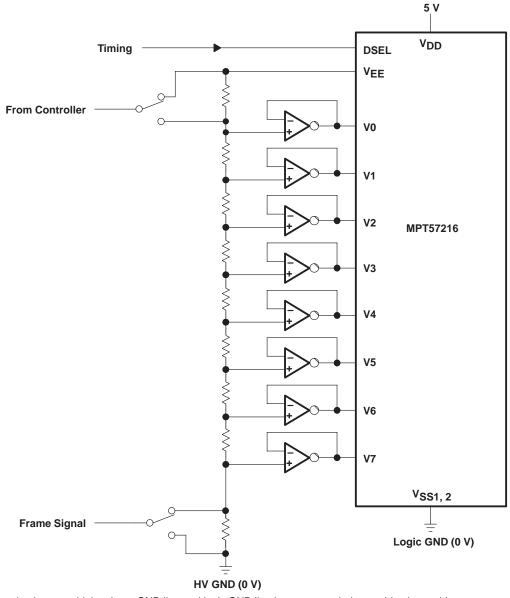
- Clock-Control Circuit Conserves Power Consumption
- Power Supply Voltage of 5 V ±10%
- High-Voltage CMOS SI Gate Technology
- 231-Pin TAB (Tape Automated Bonding)
- Functional Equivalent of MPT57206

NOTE A: Pin numbering is for reference only to the function table. The pin numbering in this figure does not correspond to the numbering on the custom tape.

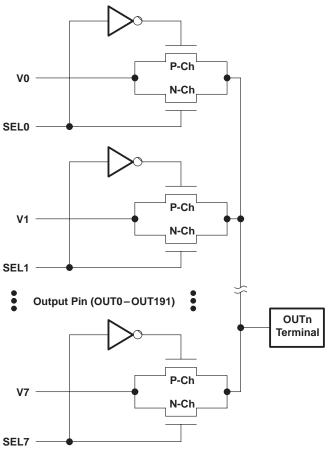
description


The MPT57216 is a 192-channel color thin-film transistor (TFT) LCD driver based on an active matrix LCD (AMLCD). It has 3 bits for each RGB input. These 3 bits are decoded internally to select one of eight bias-voltage levels, V0 to V7 for output, in order to support 512 colors ($R = 2^3 = 8$; $G = 2^3 = 8$; $B = 2^3 = 8$; $C = 2^3 =$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


functional block diagram

NOTE A: These terminals are for factory testing only and should be left open.



power supply circuit

NOTE A: Separation between high voltage GND line and logic GND line is recommended to avoid noise problems.

decoding for OUT0 - OUT191

NOTE A. The C32 – C10 inputs are decoded internally to derive SEL0 – SEL7 from the output of a 3-to-8 decoder. Only one of the decoder outputs, SEL0 – SEL7, puts \approx V_{EE} on the P-CH and \approx V_{SS} on the N-CH of its corresponding transmission gate. This allows only one of eight bias voltages, V0 – V7, to pass onto OUTn.

Terminal Functions

NAME	TERMINAL	I/O					FUNC	TION										
C32 C31 C30	207 208 209	ı			the LCD	outputs.		port nur	mber and n = wei	ports selects up ight selected.	to 8-lev-							
C22 C21	210 211			C32	INPUT C31	C30	DSEL =	_	DESEL = H	1								
C20 C12 C11	212 213 214			C22 C12	C21 C11	C20 C10	(Noninve	rted)	(Inverted)									
C10	215			1 1 1	1 1 0	1 0 1	V7 V6 V5		V0 V1 V2]								
				1 0 0 0	0 1 1 0	0 1 0 1	V4 V3 V2 V1		V3 V4 V5 V6									
				0	0	0	V0		V7	J								
CL	217	1								egister, data mem or normal operati								
CLK	216	ı	stored in	Clock input. CLK is the rising edge systems clock for the 64-bit shift register. Also, 9 bits of data are stored in the data memory by the falling edge of CLK. The clock control circuit stops the internal system clock to save power consumption after 64 clocks.														
DSEL	205	205	205	205	205	205 I	205 I	205 l	1	Data sele	ect input. T	his input	inverts th	e data on C10	to C32	input.		
							INPUT D			TA MEMORY								
				C10 to	C32 I	DSEL = L	DSEL =	: H										
				1	\dashv	1	0		-									
EIO1	219	I/O	Enable I/	O. EIO1 aı	nd EIO2 a	are data e	nable input/ou	tput for	cascade interfac	e.								
EIO2	204				R/L		EIO1	i –	EIO2		1							
							H (Left S	hift)	Cas	cade Input	Casc	ade Output (OUT	Γ0 – OUT191)	1				
				L (Right S	Shift)	Cas	cade Output	Casc	ade Input (OUT1	91 – OUT0)]							
LS	218	I	192) and	Latch Strobe Input. When LS is high, 9 x 64 bits of data memory is latched into the display latch (3 x 192) and passed through a 3-to-8 decoder. The decoder selects one of eight bias voltage V0 – V7 to be passed on to OUTn using a transmission gate. LS also clears the shift register and clock control circuit.														
MODE	231	I		Mode input. MODE is used for factory testing only and should be left open. The internal pullup resistors connected to V _{DD} force the inputs into a high state.														
OUT0 – OUT191	1 – 192	0	192-char OUT(3n)	92-channel output for RGB color LCD display. C1x, C2x, and C3x select bias voltages, V0 – V7, on UT(3n), OUT(3n+1), and OUT(3n+2), where n = 0 – 63, respectively.														

Terminal Functions (continued)

NAME	TERMINAL	I/O		FUNCTION							
R/L	221	I	shift regis three diffe three at a	elect right/left shift. \overline{R}/L selects which direction the EIOn enable pulse advances through the 64-bit hift register. It also selects which direction the 3-bit \times 3 RGB data from the data latch is loaded into here different but adjacent channels of data memory. This data is loaded as the channels are enabled here at a time by the enable pulse from the shift register. It advances from one output to the next when hifting through the shift register with each clock pulse.							
				R/L H L							
				Shift Direction	Left	Right					
				EIO1	Input	Output					
				EIO2	Output	Input					
				CLK	1, 2, 3, 64	1, 2, 3, 64					
				C32 - C30	2, 5, 8, 191	191, 188, 185, 2					
				C22 – C20	1, 4, 7, 190	190, 187, 184, 1					
				C12 – C10	0, 3, 6, 189	189, 186, 183, 0					
TEST1 TEST2	193 194	ı		Test input. TEST1 and TEST2 are used for factory testing only and should be left open. The internal pullup resistors connected to V _{DD} force the inputs into a high state.							
V0 – V7 V0 – V7	202 – 195 223 – 230	I	device ou the V0 to	Eight-level input bias voltage for output buffer. After the three bits for each RGB color are decoded, the device outputs one voltage level from the eight possible bias voltages (V0 – V7). There is no priority on the V0 to V7 terminals. A pair of V0 to V7 bias voltage terminals are provided. Each pair of terminals is required to be connected together externally.							
V_{DD}	206		5-V supp	5-V supply input for logic circuits							
VEE	222		Supply input for level shifter and output transmission gate.								
VSS1 VSS2	220 203		Ground to	Ground terminals							

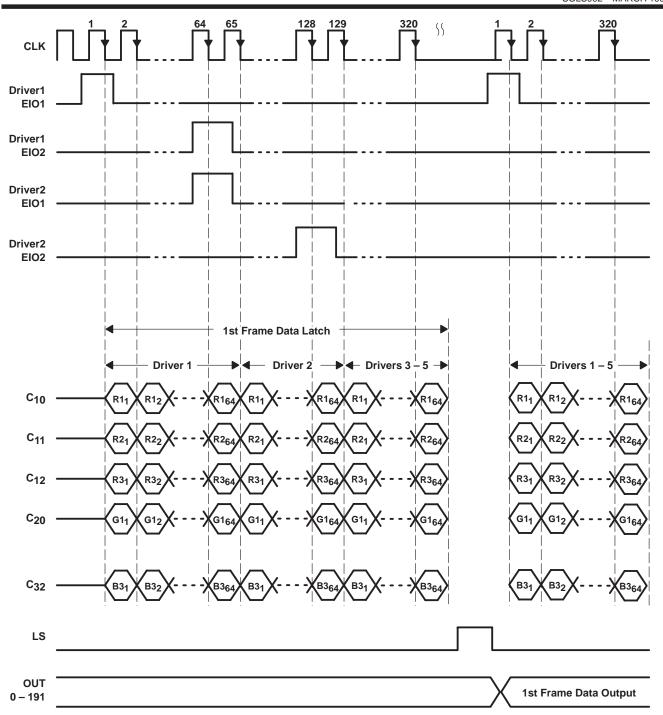


Figure 1. Timing Diagram ($\overline{R}/L = H$)

absolute maximum ratings over operating free-air temperature range†

Supply voltage range, V _{DD} (see Note 1)
Supply voltage range for LCD, V _{EE} . −0.3 V to 22 V
Input voltage range, V_I (CLK, LS, \overline{R}/L , \overline{CL} , C32 to C10, DSEL, EIO1, EIO2)0.3 V to V_{DD} + 0.3 V
Output voltage range, V_O (E101, E102)
Output bias voltage range for LCD, Vx
Input current, I _I \pm 10 mA
Output current, I _{O:} E101, E102 10 mA
OUT0 to OUT191 5 mA
Power dissipation, P _D 0.3 W
Operating free-air temperature range, T _A
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Voltage values are with respect to VSS1 and VSS2

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}	See Note 2	4.5	5	5.5	V
Supply voltage, VEE	See Note 2	14		18	V
Output bias voltage for LCD driver	V0, V1, V2, V3, V4, V5, V6, V7 See Note 2	0		VEE	V
High-level input voltage, VIH	CLK, LS, DSEL, R/L, CL, EIO1, EIO2, C32 to C10	0.8 V _{DD}		V_{DD}	V
Low-level input voltage, V _{IL}	CLK, LS, DSEL, R/L, CL, EIO1, EIO2, C32 to C10	Vss		0.2 V _{DD}	V
Clock frequency at CLK, f(CLK)	CLK			15	MHZ
Clock frequency at LS, f(LS)	LS			100	kHz
Operating free-air temperature, TA		-55		125	°C

NOTE 2: Turn-on and -off sequence of power must be as follows:

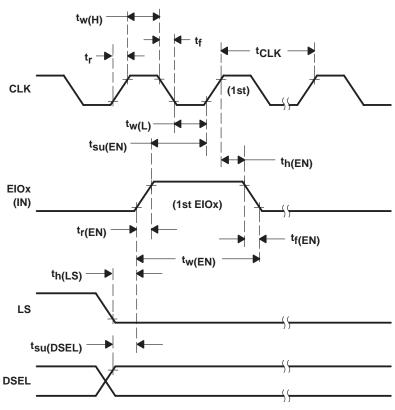
Turn-on sequence: $V_{DD} o Logic \ Input o V_{EE} o V7 \ to \ V0$ Turn-off sequence: V7 to V0 \rightarrow VEE \rightarrow Input \rightarrow VDD

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	ONDITIONS	MIN	MAX	UNIT
Vон	High-level output voltage	E101, E102	$I_{OH} = -0.3 \text{ mA}$		V _{DD} −0.4		V
VOL	Low-level output voltage	E101, E102	I _{OH} = 0.3 mA			0.4	V
IIH	High-level input current	CLK, DSEL, LS, R/L, CL, EIO1, EIO2, C32 to C10	V _{IH} = V _{DD}			10	μА
IIL	Low-level input current	CLK, DSEL, LS, R/L, CL, EIO1, EIO2, C32 to C10	V _{IL} = V _{SS}			10	μΑ
l _{lkg}	Input leakage current	V7 to V0	V _{SS} < V _X < V _{EE}		-100	100	μΑ
ΔVΙΟ	Voltage difference between Vx to OUTn (voltage variance)	Vx - OUTn	$I_{I/O} = \pm 10 \mu A$,	V _{SS} < V _X < V _{EE}		50	mV
R _{o(on)}	Output resistance	OUT0 – OUT191	$I_O = \pm 100 \mu A$			5	kΩ
I _{DD}	Supply current	V _{DD}	f(CLK) = 15 MHZ, f(LS) = 30 KHZ, VEE = 18V	f(EIOxin) = 30 KHZ, V _{DD} = 5.5 V,		4	mA
IEE	Supply current	V _{EE}	f(CLK) = 15 MHZ, f(LS) = 30 KHZ, VEE = 17V	f(EIOxin) = 30 KHZ, V _{DD} = 5 V,		1	mA
11/ 11 11 1	Standby current	V _{DD}	V _{DD} = 5 V, See Note 3	V _{EE} = 17 V		300	μΑ
^I I(standby)	Standby current	VEE	V _{DD} = 5 V, See Note 3	V _{EE} = 17 V		100	μΑ

NOTE 3: Test conditions of standby current are added at $\overline{R}/L = V_{DD}$, and EIO1 = V_{SS} .

timing requirements, V_{DD} = 5 V, T_A = -55°C to 125°C

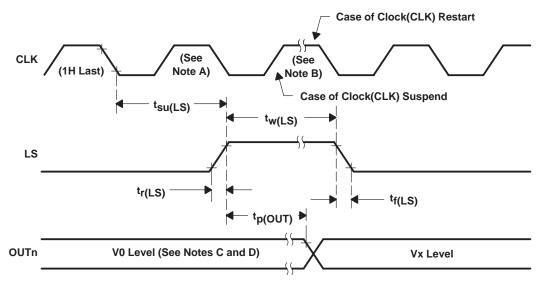

	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
tCLK	Clock cycle time		See Figures 2 and 4	66		ns
t _{W(L)}	Low-level pulse width	CLK	See Figure 2	23		ns
t _W (H)	High-level pulse width		See Figure 2	18		ns
t _{su}	Data setup time	Cxx — CLK	See Figure 4	10		ns
th	Data hold time	CLK — Cxx	See Figure 4	15		ns
t _w (EN)	Enable high-level pulse width	EIO1, EIO2	See Figure 2	1/fCLK		ns
^t su(EN)	Enable setup time	EIOx — CLK	See Figure 2	20	30 or	ns
^t h(EN)	Enable hold time	CLK — EIOx	See Figure 2	10	t _{CLK} × 62	ns
tw(LS)	Latch strobe high-level pulse width		See Figure 3	40		ns
t _{su(LS)}	LS setup time	LS	See Figure 3	66		ns
th(LS)	LS hold time		See Figure 2	40		ns
t _{su(DSEL)}	DSEL setup time	EIOx - DSEL	See Figure 2	66		ns

switching characteristics, V_{DD} = 5 V, T_A = -55°C to 125°C over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
It. (EN) Enable propagation delay time I CI K — EICV I		C _L = 35 pF, See Note 4 and Figure 4		40	ns	
tp(OUT)	Output propagation delay time	LS - OUTn	C _L = 200 pF, See Note 4 and Figure 3		3.0	μs

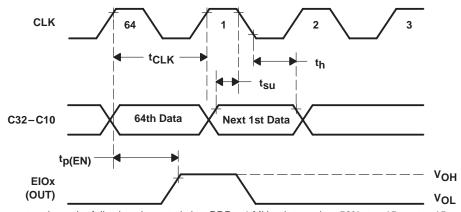
NOTE 4: C_L includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION



NOTES: A. Input pulse generators have the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $t_f \leq$ 15 ns, $t_f \leq$ 15 ns, $z_O =$ 50 Ω .

- B. V_{IH} and V_{IL} for all waveforms are at 0.8 V_{DD} and 0.2 V_{DD} respectively.
- C. All timing parameters and measurements are referenced at the 0.5 $\mbox{V}_{\mbox{DD}}$ point of each waveform.


Figure 2. EIOx (IN), LS, and DSEL Timing Waveforms

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Case of data input change: if data has changed after the last clock of 1H, then it is recommended to add a dummy clock of one pulse after the last 1H pulse of the clock.
 - B. Case of suspending clock (CLK) after data transfer (1H) completion: it is recommended that the data input not be changed while the clock is suspended.
 - C. All timing parameters and measurements are referenced at the 0.5 V_{DD} point of each waveform except t_{p(OUT)} on the OUTn waveform. The reference point on the OUTn waveform is V0+0.1 Vx for positive-going transitions and V0-0.1 Vx for negative-going transitions
 - D. OUTn waveform transitions are from V0 level to Vx level. Maximum V0 and Vx levels are 8.0 V due to tester limitations.
 - E. Input pulse generators have the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $t_f \leq$ 15 ns, $t_f \leq$ 15 ns, $z_0 =$ 50 Ω .
 - F. VIH and VII for all waveforms are at 0.8 VDD and 0.2 VDD respectively.

Figure 3. LS and OUTn Timing Waveforms

- NOTES: A. Input pulse generators have the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $t_f \leq$ 15 ns, $t_f \leq$ 15 ns, $t_0 =$ 50 Ω .
 - B. V_{IH} and V_{IL} for all waveforms are at 0.8 V_{DD} and 0.2 V_{DD} respectively.
 - C. All timing parameters and measurements are referenced at the 0.5 V_{DD} point of each waveform.

Figure 4. Cxx and EIOx (OUT) Timing Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated