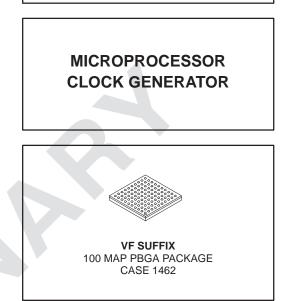
Product Preview Clock Generator for PowerQUICC III

The MPC9850 is a PLL based clock generator specifically designed for Motorola Microprocessor And Microcontroller applications including the PowerQUICC III. This device generates a microprocessor input clock plus the 500 MHz Rapid I/O clock. The microprocessor clock is selectable in output frequency to any of the commonly used microprocessor input and bus frequencies. The Rapid I/O outputs are LVDS compatible. The device offers eight low skew clock outputs organized into two output banks, each configurable to support different clock frequencies. The extended temperature range of the MPC9850 supports telecommunication and networking requirements.

Features

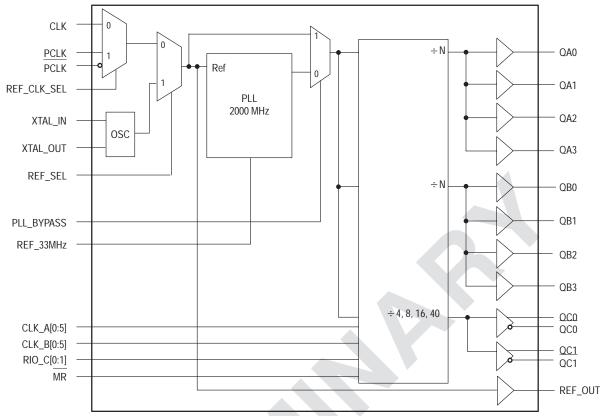

- 8 LVCMOS outputs for processor and other circuitry
- 2 differential LVDS outputs for Rapid I/O interface
- · Crystal oscillator or external reference input
- 25 or 33 MHz Input reference frequency
- Selectable output frequencies include = 200, 166, 133, 125, 111, 100, 83, 66, 50, 33 or 16 MHz
- Buffered reference clock output
- Rapid I/O (LVDS) Output = 500, 250 or 125 MHz
- · Low cycle-to-cycle and period jitter
- 100 lead PBGA package
- 3.3V supply with 3.3V or 2.5V (Bank B) output LVCMOS drive
- Supports computing, networking, telecommunications applications
- Ambient temperature range –40°C to +85°C

Functional Description

The MPC9850 uses either a 25 or 33 MHz reference frequency to generate 8 LVCMOS output clocks, of which, the frequency is selectable from 16 MHz to 200 MHz. The reference is applied to the input of a PLL and multiplied to 2 GHz. Output dividers, divide this frequency by 10, 12, 15, 16, 18, 20, 24, 30, 40, 60 or 120 to produce output frequencies of 200, 166, 133, 125, 111, 100, 83 66 50 33 or 16 MHz. The single-ended LVCMOS outputs are divided into two banks of 4 low skew outputs each, for use in driving a microprocessor or microcontroller clock input as well as other system components. The 2 GHz PLL output frequency is also divided to produce a 125, 250 or 500 MHz clock output for Rapid I/O applications such as found on the PowerQUICC III communications processor. The input reference, either crystal or external input is also buffered to a separate output that my be used as the clock source for a Gigabit Ethernet PHY if desired.

The reference clock may be provided by either an external clock input of 25 MHz or 33 MHz. An internal oscillator requiring a 25 MHz crystal for frequency control may also be used. The external clock source my be applied to either of two clock inputs and selected via the CLK_SEL control input. Both single ended LVCMOS and differential LVPECL inputs are available. The crystal oscillator or external clock input is selected via the input pin of REF_SEL. Other than the crystal, no external components are required for crystal oscillator operation. The REF_33MHz configuration pins is used to select between a 33 and 25 MHz input frequency.

The MPC9850 is packaged in a 100 lead MAPBGA package to optimize both performance and board density.



MPC9850

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Table 1. PIN CONFIGURATIONS

Pin	I/O	Туре	Function	Supply	Active/State
CLK	Input	LVCMOS	PLL reference clock input (pull-down)	V _{DD}	
PCLK, PCLK	Input	LVPECL	PLL reference clock <u>input</u> (PCLK – pull–down, PCLK – pull–up and pull–down)	V _{DD}	
QA0, QA1, QA2, QA3	Output	LVCMOS	Bank A Outputs	VDDOA	
QB0, QB1, QB2, QB3	Output	LVCMOS	Bank B Outputs	V _{DD}	
QC0, QC1, QC0, QC1	Output	LVDS	Bank C Outputs		
REF_OUT	Output	LVCMOS	Reference Output (25 MHz or 33 MHz)	VDD	
XTAL_IN	Input	LVCMOS	Crystal Oscillator Input Pin	VDD	
XTAL_OUT	Output	LVCMOS	Crystal Oscillator Output Pin	VDD	
REF_CLK_SEL	Input	LVCMOS	Select between CLK and PCLK input (pull-down)	VDD	high
REF_SEL	Input	LVCMOS	Select between External Input and Crystal Oscillator Input (pull–down)	V _{DD}	high
REF_33MHz	Input	LVCMOS	Selects 33MHz input (pull-down)	V _{DD}	high
MR	Input	LVCMOS	Master Reset (pull–up)	V _{DD}	low
PLL_BYPASS	Input	LVCMOS	Select PLL or static test mode (pull-down)	VDD	high
CLK_A[0:5] ^a	Input	LVCMOS	Configures Bank A clock output frequency (pull-up)	V _{DD}	high
CLK_B[0:5] ^b	Input	LVCMOS	Configures Bank B clock output frequency (pull-up)	VDDOB	high
RIO_C [0:1]	Input	LVCMOS	Configures Bank C clock output frequency (pull-down)	V _{DD}	
V _{DD}			3.3 V Supply		
V _{DDA}			Analog Supply		
VDDOB			Supply for Output Bank B		
GND			Ground		

a. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)
b. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)
c. PowerPC bit ordering (bit 0 = msb, bit 1 = lsb)

Table 2. FUNCTION TABLE

Control	Default	0	1		
REF_CLK_SEL	0	CLK	PCLK		
REF_SEL	0	CLK or PCLK	XTAL		
PLL_BYPASS	0	Normal	Bypass		
REF_33MHz	0	Selects 25MHz Reference	Selects 33MHz Reference		
MR	1	Reset	Normal		
CLK_A, CLK_B, and RIO_C control output frequencies. See Table 3 and Table 4 for specific device configuration					

Table 3. OUTPUT CONFIGURATIONS (BANKS A & B)

CLK_x[0:5] ^a	CLK_x[0] (msb)	CLK_x[1]	CLK_x[2]	CLK_x[3]	CLK_x[4]	CLK_x[5] (Isb)	N	Frequency (MHz)
111111	1	1	1	1	1	1	126	15.87
111100	1	1	1	1	0	0	120	16.67
101000	1	0	1	0	0	0	80	25.00
011110	0	1	1	1	1	0	60	33.33
010100	0	1	0	1	0	0	40	50.00
001111	0	0	1	1	1	1	30	66.67
001100	0	0	1	1	0	0	24	83.33
001010	0	0	1	0	1	0	20	100.00
001001	0	0	1	0	0	1	18	111.11
001000	0	0	1	0	0	0	16	125.00
000111	0	0	0	1	1	1	15	133.33
000110	0	0	0	1	1	0	12	166.67
000101	0	0	0	1	0	1	10	200.00
000100	0	0	0	1	0	0	8 ^b	250

a. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)

b. Minimum value for N

Table 4. OUTPUT CONFIGURATIONS (BANK C)

RIO_C[0:1]	Frequency (MHz)
00	50 (test output)
01	125
10	250
11	500

OPERATION INFORMATION

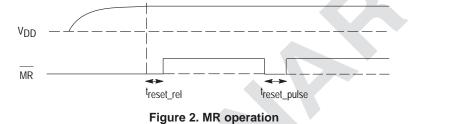
Output Frequency Configuration

The MPC9850 was designed to provide the commonly used frequencies in PowerQUICC, PowerPC and other microprocessor systems. Table 3 lists the configuration values that will generate those common frequencies. The MPC9850 can generate numerous other frequencies that may be useful in specific applications. The output frequency (fout) of either Bank A or Bank B may be calculated by the following equation.

fout = 2000 / N

where fout is in MHz and N = 2 * $CLK_x[0:5]$

This calculation is valid for all values of N from 8 to 126.


Note that N = 15 is a modified case of the configuration inputs CLK_x[0:5]. To achieve N = 15 CLK_x[0:5] is configured to 00111 or 7.

Crystal Input Operation

TBD

Power-Up and MR Operation

Figure 2 defines the release time and the minumum pulse length for MR pin. The MR release time is based upon the power supply being stable and within V_{DD} specifications. See Table 11 for actual parameter values. The MPC9850 may be configured after release of reset and the outputs will be stable for use after lock indication is obtained.

Power Supply Bypassing

The MPC9850 is a mixed analog/digital product. The architecture of the MPC9850 supports low noise signal operation at high frequencies. In order to maintain its superior signal quality, all V_{DD} pins should be bypassed by high-frequency ceramic capacitors connected to GND. If the spectral frequencies of the internally generated switching noise on the supply pins cross the series resonant point of an individual bypass capacitor, its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the noise bandwidth.

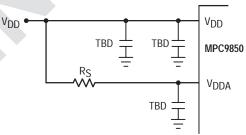


Figure 3. V_{CC} Power Supply Bypass

Table 5. ABSOLUTE MAXIMUM RATINGSa

Symbol	Characteristics	Min	Max	Unit	Condition
V _{DD}	Supply Voltage (core)	-0.3	3.8	V	
V _{DDA}	Supply Voltage (Analog Supply Voltage)	-0.3	V _{DD}	V	
VDDOB	Supply Voltage (LVCMOS output for Bank B)	-0.3	V _{DD}	V	
VIN	DC Input Voltage	-0.3	V _{DD} +0.3	V	
Vout	DC Output Voltage ^b	-0.3	V _{DDx} +0.3	V	
IIN	DC Input Current		±20	mA	
IOUT	DC Output Current		±50	mA	
т _S	Storage Temperature	-65	125	°C	

a. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

b. V_{DDx} references power supply pin associated with specific output pin.

Table 6. GENERAL SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
VTT	Output Termination Voltage		V _{DD} ÷ 2 V _{DDOB} ÷ 2		V	Bank A output Bank B output
MM	ESD Protection (Machine Model)	TBD			V	
HBM	ESD Protection (Human Body Model)	TBD			V	
CDM	ESD Protection (Charged Device Model)	TBD			V	
LU	Latch-Up Immunity	200			mA	
CIN	Input capacitance		TBD		pF	Inputs
θJC	Thermal resistance (junction-to-ambient, junction-to- board, junction-to-case)		TBD		°C/W	
ТА	Ambient Temperature ^a	-40		85	°C	

a. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are specified up to 110°C junction temperature allowing the MPC9850 to be used in applications requiring industrial temperature range. It is recommended that users of the MPC9850 employ thermal modeling analysis to assist in applying the junction temperature specifications to their particular application.

Table 7. DC CHARACTERISTICS ($T_A = -40^{\circ}C$ to $85^{\circ}C$)

Symbol	Characteristics	Min	Тур	Мах	Unit	Condition			
Supply C	Supply Current for V _{DD} =3.3V±5% and V _{DDOB} = 3.3V±5%								
IDD	Maximum Quiescent Supply Current (Core)		TBD	TBD	mA	V _{DD} pins			
IDDC	Maximum Quiescent Supply Current (Analog Supply)		TBD	TBD	mA	V _{DDIN} pins			
IDDOB	Maximum Bank B Supply Current		TBD	TBD	mA	V _{DDOB} pins			
Supply C	urrent for V _{DD} = $3.3V\pm5\%$ and V _{DDOB} = $2.5V\pm5\%$								
IDD	Maximum Quiescent Supply Current (Core)		TBD	TBD	mA	V _{DD} pins			
IDDC	Maximum Quiescent Supply Current (Analog Supply)		TBD	TBD	mA	V _{DDIN} pins			
IDDOB	Maximum Bank B Supply Current		TBD	TBD	mA	V _{DDOB} pins			

Table 8. LVDS DC CHARACTERISTICS (T_A = -40° C to 85° C)

Symbol	Characteristics		Min	Тур	Max	Unit	Condition
Differential LVDS clock outputs (QC0, QC0 Cnd QC1, QC1) for VDD=3.3V±5%							
VPP	Output Differential Voltage ^a (peak-to-peak)	(LVDS)	250			mV	
Vos	Output Offset Voltage	(LVDS)	1125		1275	mV	

a. Vpp is the minimum differential input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.

Table 9. LVPECL DC CHARACTERISTICS $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)^a$

Symbol	Characteristics	Min	Тур	Max	Unit	Condition		
Differentia	Differential LVPECL clock inputs (CLK1, CLK1) for V _{DD} =3.3V±0.5%							
VPP	Differential Voltage ^b (peak-to-peak) (LVPECL)	250			mV			
VCMR	Differential Input Crosspoint Voltage ^C (LVPECL)	1.0		V _{DD} - 0.6	V			

a. AC characteristics are design targets and pending characterization.

b. Vpp is the minimum differential input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.

c. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the device propagation delay, device and part-to-part skew.

Table 10. LVCMOS I/O DC CHARACTERISTICS ($T_A = -40^{\circ}C$ to $85^{\circ}C$)

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
LVCMOS	for V _{DD} =3.3V±5%					•
VIH	Input High Voltage	2.0		V _{DD} + 0.3	V	LVCMOS
VIL	Input Low Voltage			0.8	V	LVCMOS
I _{IN}	Input Current ^a			10	μC	VIN=VDDL or GND
LVCMOS for V _{DD} =3.3V±5% and V _{DDOB} = 3.3V±5%						
Vон	Output High Voltage	2.4			V	I _{OH} =-24 ma
VOL	Output Low Voltage			0.4	V	I _{OL} = 24 ma
ZOUT	Output Impedance		14		Ω	
LVCMOS	for V _{DD} = $3.3V\pm5\%$ and V _{DDOB} = $2.5V\pm5\%$					
Vон	Output High Voltage	1.9			V	I _{OH} =-15 ma
V _{OL}	Output Low Voltage			0.4	V	I _{OL} = 15 ma
Z _{OUT}	Output Impedance		22		Ω	

a. Inputs have pull-down resistors affecting the input current.

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
Input and outp	but timing specification					
fref	Input reference frequency (25 MHz input) Input reference frequency (33 MHz input) XTAL Input Input reference frequency in PLL bypass mode ^C	TBD TBD TBD	25 33 25	TBD TBD TBD TBD	MHz MHz MHz	PLL bypass
fVCO	VCO frequency ranged		2000		MHz	
fMCX	Output Frequency Bank C output Bank B output Bank C output			TBD TBD TBD	MHz MHz MHz	PLL locked
f _{ref} PW	Reference Input Pulse Width	TBD			ps	
^f refCcc	Input Frequency Accuracy			100	ppm	
t _r , t _f	Output Rise/Fall Time	TBD		TBD	ns	20% to 80%
DC	Output duty cycle	47.5 45	50 50	52.5 55	%	3.3V operation 2.5V operation
DCOSC	Reference Output for Crystal Input	TBD	50	TBD	%	
PLL specificat	tions				•	
BW	PLL closed loop bandwidth ^e		TBD		kHz	
^t LOCK	Maximum PLL Lock Time			10	ms	
^t reset_ref	MR hold time on power up	TBD			ns	
treset_pulse	MR hold time	TBD			ns	
Skew and jitte	er specifications					
^t sk(O)	Output-to-output Skew (within a bank)			50	ps	
^t sk(O)	Output-to-output Skew (across banks A and B)			100	ps	V _{DDOB} = 3.3V
^t JIT(CC)	Cycle-to-cycle jitter RMS $(1 \sigma)^{f}$			10	ps	
^t JIT(PER)	Period Jitter RMS (1 σ)		TBD		ps	
^t JIT(∅)	I/O Phase Jitter RMS (1 σ)		TBD		ps	
t _r , t _f	Output Rise/Fall Time			TBD	ns	20% to 80%

Table 11. AC CHARACTERISTICS (VDD=3.3V±59	%, V _{DDOB} =3.3V±5%, T _A = -40°C to +85°C) ^a b
---	--

a. AC characteristics are design targets and pending characterization.

b. AC characteristics apply for parallel output termination of 50Ω to VTT.

c. In bypass mode, the MPC9850 divides the input reference clock.

d. The input reference frequency must match the VCO lock range divided by the total feedback divider ratio: $f_{ref} = (f_{VCO} \div M) \cdot N$.

e. -3 dB point of PLL transfer characteristics.

f. See application note AN1934 for a jitter calculation for other confidence factors than 1 σ .

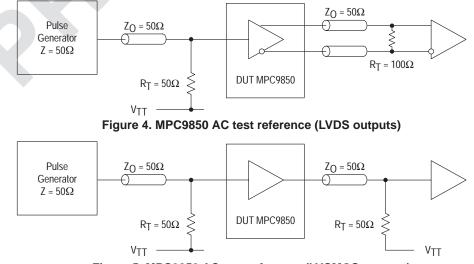
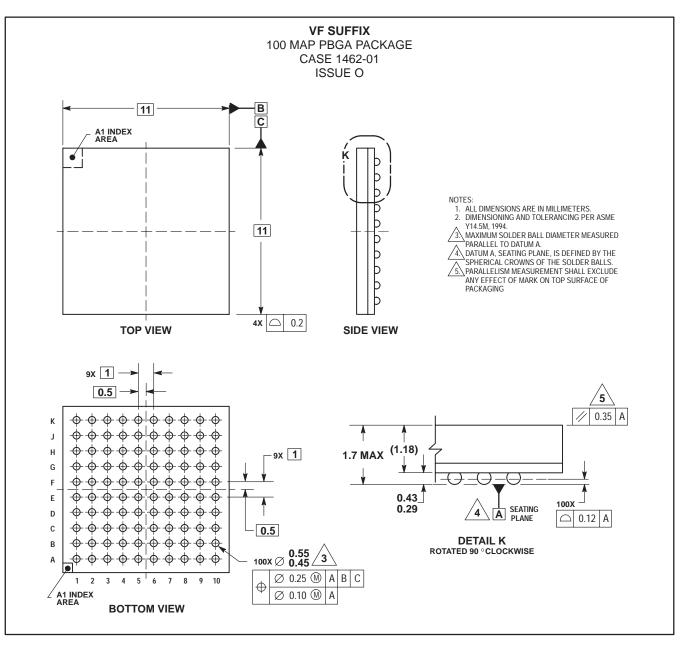


Figure 5. MPC9850 AC test reference (LVCMOS outputs)

Table 12. MPC9850 Pin Diagram (Top View)

	1	2	3	4	5	6	7	8	9	10
Α	VDDOB	VDDOB	CLKA[1]	CLKA[3]	CLKA[5]	V _{DD}	QA1	QA2	VDDOB	VDDOB
В	V _{DDOB}	VDDOB	CLKA[0]	CLKA[2]	CLKA[4]	QA0	V _{DD}	QA3	VDDOB	VDDOB
С	RSVD	RSVD	V _{DD}	REF_OUT						
D	V _{DDA}	V _{DDA}	V _{DD}	GND	GND	GND	GND	V _{DD}	QC0	QC0
Е	REF_SEL	CLK	V _{DD}	GND	GND	GND	GND	V _{DD}	V _{DD}	GND
F	PCLK	PCLK	V _{DD}	GND	GND	GND	GND	V _{DD}	QC1	QC1
G	REF_CLK_SEL	REF_33MHz	V _{DD}	GND	GND	GND	GND	V _{DD}	PLL_BYPASS	MR
н	XTAL_IN	XTAL_OUT	V _{DD}	RIO_C[1]	RIO_C[0]					
J	VDDOB	VDDOB	CLKB[0]	CLK[2]	CLK[4]	QB0	VDDOB	QB3	VDDOB	VDDOB
К	VDDOB	VDDOB	CLKB[1]	CLKB[3]	CLKB[5]	VDDOB	QB1	QB2	VDDOB	VDDOB
Table 13. MPC9850 Pin List										


Table 13. MPC9850 Pin List

Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA
VDDOB	A1	RSVD ^a	C1	REF_SEL	E1	REF_CLK_SEL	G1	VDDOB	J1
VDDOB	A2	RSVDa	C2	CLK	E2	REF_33MHz	G2	VDDOB	J2
CLKA[1]	A3	V _{DD}	C3	V _{DD}	E3	VDD	G3	CLKB[0]	J3
CLKA[3]	A4	V _{DD}	C4	GND	E4	GND	G4	CLKB[2]	J4
CLKA[5]	A5	V _{DD}	C5	GND	E5	GND	G5	CLKB[4]	J5
V _{DD}	A6	V _{DD}	C6	GND	E6	GND	G6	QB0	J6
QA1	A7	V _{DD}	C7	GND	E7	GND	G7	VDDOB	J7
QA2	A8	V _{DD}	C8	V _{DD}	E8	V _{DD}	G8	QB3	J8
VDDOB	A9	V _{DD}	C9	VDD	E9	PLL_BYPASS	G9	VDDOB	J9
VDDOB	A10	REF_OUT	C10	GND	E10	MR	G10	VDDOB	J10
V _{DDOB}	B1	V _{DDA}	D1	PCLK	F1	XTAL_IN	H1	VDDOB	K1
VDDOB	B2	VDDA	D2	PCLK	F2	XTAL_OUT	H2	VDDOB	K2
CLKA[0]	B3	VDD	D3	V _{DD}	F3	V _{DD}	H3	CLKB[1]	K3
CLKA[2]	B4	GND	D4	GND	F4	V _{DD}	H4	CLKB[3]	K4
CLKA[4]	B5	GND	D5	GND	F5	V _{DD}	H5	CLKB[5]	K5
QA0	B6	GND	D6	GND	F6	V _{DD}	H6	VDDOB	K6
V _{DD}	B7	GND	D7	GND	F7	V _{DD}	H7	QB1	K7
QA3	B8	V _{DD}	D8	V _{DD}	F8	V _{DD}	H8	QB2	K8
VDDOB	В9	QC0	D9	QC1	F9	RIO_C[1]	H9	VDDOB	K9
VDDOB	B10	QC0	D10	QC1	F10	RIO_C[0]	H10	VDDOB	K10

a. RSVD pins must be left open.

MPC9850

NOTES

MPC9850

NOTES

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners.

© Motorola Inc. 2003

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

TECHNICAL INFORMATION CENTER: 1–800–521–6274 or 480–768–2130

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu, Minato–ku, Tokyo 106–8573 Japan 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

HOME PAGE: http://motorola.com/semiconductors

