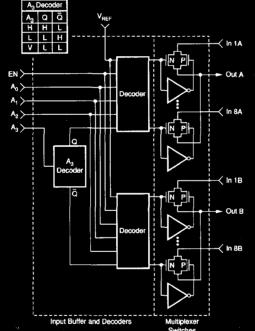


MPC800

High Speed CMOS ANALOG MULTIPLEXER

FEATURES

- HIGH SPEED 100ns Access Time 800ns Settling to 0.01% 250ns Settling to 0.1%
- USER-PROGRAMMABLE 16-Channel Single-Ended or 8-Channel Differential
- SELECTABLE TTL OR CMOS COMPATIBILITY
- WILL NOT SHORT SIGNAL SOURCES Break-Before-Make Switching
- SELF-CONTAINED WITH INTERNAL CHANNEL ADDRESS DECODER
- 28-PIN HERMETIC DUAL-IN-LINE PACKAGE


DESCRIPTION

The MPC800 is a high speed multiplexer that is user-programmable for 16-channel single-ended operation or 8-channel differential operation and for TTL or CMOS compatibility.

The MPC800 features a self-contained binary address decoder. It also has an enable line which allows the user to inhibit the entire multiplexer thereby facilitating channel expansion by adding additional multi-plexers.

High quality processing is employed to produce CMOS FET analog channel switches which have low leakage current, low ON resistance, high OFF resistance, low feedthrough capacitance, and fast settling time.

Two models are available, the MPC800KG for operation from 0°C to +75°C and the MPC800SG for operation from -55°C to +125°C.

International Airport Industrial Park - Mailing Address: PO Box 11400 - Tucson, AZ 85734 - Street Address: 6730 S. Tucson Bivsl. - Tucson, AZ 85736 Tel: (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 066-6491 - FAX: (602) 889-1510 - Immediate Product Info: (900) 548-5132

5.69

5

MULTIPLEXERS

SPECIFICATIONS

ELECTRICAL

At T_A = +25°C and ±V_{cc} = 15V, unless otherwise noted.

	سندن					
7.	1			MPC800KG, MPC800S		
PARAMETER	:	MIN		TYP	MAX	UNITS
ANALOG INPUTS						
Voltage Range		-15			+15	٧
Maximum Overvoltage		-V _∞ -2			+V _{cc} +2	٧
Number of Input Channels	e .	A		The state of the state of		and the state of the state of
Differential		8				
Single-Ended		16				
Reference Voltage Range(1)	4 v,	6			10	V
ON Characteristics ⁽²⁾						
ON Resistance (R _{ON}) at +25°C				620	750	Ω
Over Temperature Range				700	1000	Ω
R _{OM} Drift vs. Temperature			Que	Typical Parformance Cu		1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
R Mismatch				< 10		Ω
Fon Mismatch ON Channel Leakage				0.04		nA
Over Temperature Range				0.6	100	nA
ON Channel Leakage Drift			6			, 164
OFF Characteristics			300	Typical Performance Cu	1005	
OFF Isolation		£/		90		dBĕ
OFF Channel Input Leakage				0.01		nA
Over Temperature Range	4			0.38	50	An
OFF Channel Input Leakage Drift			See	Typical Performance Cu	rves	
OFF Channel Output Leakage				0.035		nA
Over Temperature Range		N .		0.48	100	. nA
OFF Channel Output Leakage Drift		×	See	Typical Performance Cu	rves	
Output Leakage (All channels disabled)(3)				0.02	the state of	. nA
Output Leakage with Overvoltage					per a contract of the contract	
+16V Input		100		< 0.35		mΑ
-16V Input				< 0.65		mA
DIGITAL INPUTS						
Over Temperature Range						
TTL®		F _{SE}				
Logic "0" (V _{AL})	e 25	5 T 10			0.8	٧
Logic "1" (V _{AH})		2.4				v
I	· ·	·		0.05	1	μА
lan la				4	25	μA
TTL Input Overvoltage		–6			6	· v
CMOS						
Logic *0" (V)					0.3V _{REF}	V
Logic "1" (V _{AH})		0.7V			O.O. REF	, v
CMOS input Overvoltage		2			+V . +2	v
Address A Overvoltage		-V _{cc} -2			+V _{cc} +2 +V _{cc} +2	, v
Digital Input Capacitance		° cc - 2		5	T CC TE	pF
Channel Select ⁽⁵⁾						μ,
Single-Ended			4.6	 bit Binary Code One of	16	
Differential			4-0	bit Binary Code One of		
Enable				ic "0" Inhibits All Chan		
			Log	t o inilions Air Chan	1015	
POWER REQUIREMENTS				100		
Over Temperature Range				14		
Rated Supply Voltage				±15		V
Maximum Voltage Between	Τ,					
Supply Pins					33	V
Total Power Dissipation				525	,	mW
Allowable Total Rower Dissipation(6)					1200	mW
Supply Drain (+25°C)						
At 1MHz Switching Speed	7.7			+35, -39		mA :
At 100kHz Switching Speed				+25, -29		mA
				720, 20		nu.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

SPECIFICATIONS (CONT)

ELECTRICAL

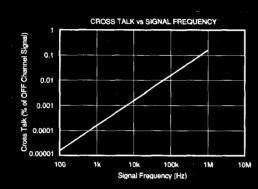
At T_A = +25°C and ±V_{cc} = 15V, unless otherwise noted.

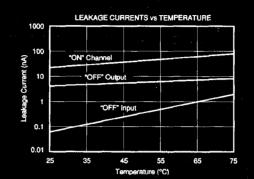
total kalanda kanada ka		IPC800KG, MPC800S	G ,	
PARAMETER	MIN	ТҮР	MAX	UNITS
DYNAMIC CHARACTERISTICS				
Gain Error		< 0.0003		%
Cross Talk ⁽⁷⁾	See	Typical Performance Cu	irves	
Toern (Break-before-make delay)	i.	20		ns
Access Time at +25°C	1	100	150	ns
Over Temperature Range	N .	120	200	ns
Settling Time ⁽⁶⁾			Ne	
to 0.1% (20mV)		250		ns
to 0.01% (2mV)		800		ns
Common-Mode Rejection (Differential)			,	
OC		> 125		dB
60Hz		> 75		dB
OFF Channel Input Capacitance, Cs		2.5	***	ρF
OFF Channel Output Capacitance, Ca		5gr 18		pF
OFF Input to Output Capacitance, Cos		0.02	1	pF
TEMPERATURE		-		
MPC800KG				
Specification	0		+75	°C
Storage	65		+150	°Č
MRCGOCC		4,44		•
Specification	-55	15.1	+125	°C
Storage	_65		+150	Č
Storage	-05		7130	

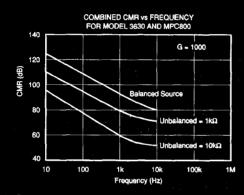
PIN CONFIGURATION

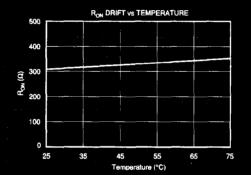
Top View		
+V _{cc} 1		28 Out A
Out B 2	21	27 -V _{CC}
NC 3		26 IN8/8A
IN16/8B 4		25 IN7/7A
IN15/7B 5		24 IN6/6A
IN14/6B 6		23 IN5/5A
IN13/5B 7		22 IN4/4A
IN12/4B 8		21 IN3/3A
IN11/3B 9		20 IN2/2A
IN10/2B 10 IN9/1B 11		19 IN1/1A 18 ENABLE
GND 12		17 A ₀
V _{REF} 13		16 A,
A ₃ 14		15 A ₂
• -		

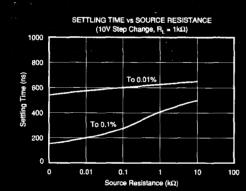
ORDERING INFORMATION


MODEL	PACKAGE	TEMPERATURE RANGE
MPC800KG	Single-Wide Cerdip	-0°C to +75°C
MPC800SG	Single-Wide Cerdip	-55°C to +125°C


PACKAGE INFORMATION®


MODEL	PACKAGE	PACKAGE DRAWING NUMBER
MPC800KG	28-Pin Single-Wide Cerdip	228
MPC800SG	28-Pin Single-Wide Cerdip	228


TYPICAL PERFORMANCE CURVES


At $T_A = +25^{\circ}\text{C}$ and $\pm \text{V}_{\text{CC}} = 15\text{V}$, unless otherwise noted.

DISCUSSION OF PERFORMANCE

Single-Ended Multiplexer **Static Accuracy**

The major contributors to static transfer accuracy for singleended multiplexers are:

Source resistance loading error Multiplexer ON resistance error

DC offset error caused by both load bias current and multiplexer leakage current.

Resistive Loading Errors

The source and load impedances will determine the ON resistance loading errors. To minimize these errors:

- Keep loading impedance as high as possible. This minimizes the resistive loading effects of the source resistance and multiplexer ON resistance. As a guideline, load impedance of $10^8\Omega$ or greater will keep resistive loading errors to 0.002% or less for 1000Ω source impedances. A $10^6\Omega$ load impedance will increase source loading error
- to 0.2% or more.

 Use sources with impedances as low as possible. A 1000Ω source resistance will present less than 0.002% loading error and $10k\Omega$ source resistance will increase source loading error 0.02% with a $10^8\Omega$ load impedance.

Input resistive loading errors are determined by the following relationship (see Figure 1):

Source and Multiplexer Resistive Loading Error

$$\in (R_{S} + R_{ON}) = \frac{R_{S} + R_{ON}}{R_{S} + R_{ON} + R_{L}} \times 100\%$$

where, $R_s = R_{SOURCE}$ $R_L = Load$ resistance

 $R_{os} = Multiplexer ON resistance$

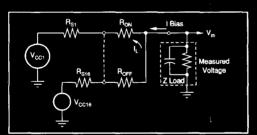


FIGURE 1. MPC800 Static Accuracy Equavalent Circuit (Single-ended Operation).

Input Offset Voltage
Bias and leakage currents generate an input offset voltage as a result of the $\boldsymbol{I}_{\mathrm{R}}$ drop across the multiplexer ON resistance and source resistance. A load bias current of 10nA, a leakage current of lnA, and an ON resistance of 700Ω will generate an offset voltage of $19\mu V$ if a 1000Ω source is used, and $118\mu V$ if a $10k\Omega$ source is used. In general, for the MPC800 the offset voltage at the output is determined by:

$$V_{OFFSET} = (I_B + I_L)(R_{ON} + R_{SOURCE})$$

I_B = Bias current of device multiplexer is driving

L = Multiplexer leakage current

R_{ON} = Multiplexer ON resistance

R_{SOURCE} = Source resistance

Differential Multiplexer Static Accuracy

Static accuracy errors in a differential multiplexer are difficult to control, especially when it is used for multiplexing low level signals with full scale ranges of 10mV to 100mV.

The matching properties of the multiplexer, source and output load play a very important part in determining the transfer accuracy of the multiplexer. The source impedance unbalance, common-mode impedance, load bias current mismatch, load differential impedance mismatch, and common-mode impedance of the load all contribute errors to the multiplexer. The multiplexer ON resistance mismatch, leakage current mismatch and ON resistance also contribute to differential errors.

Referring to Figure 2, the effects of these errors can be minimized by following the general guidelines described in this section, especially for low level multiplexing applica-

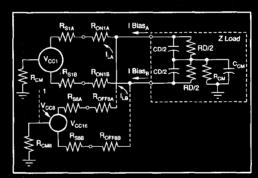


FIGURE 2. MPC800 Static Accuracy Equavalent Circuit (Differential Operation).

Load (Output Device) Characteristics

• Use devices with very low bias current. Generally FET input amplifiers should be used for low level signals less than 50mV FSR. Low bias current bipolar input amplifiers are acceptable for signal ranges higher than 50mV FSR. Bias current matching will determine input offset.

- The system DC common-mode rejection (CMR) can never be better than the combined CMR of the multiplexer and driven load. System CMR will be less than the device which has the lower CMR figure.
- \bullet Load impedances, differential and common-mode should be $10^{10}\Omega$ or higher.

Source Characteristics

- The source impedance unbalance will produce offset, common-mode, and channel-to-channel gain scatter errors. Use sources which do not have large impedance unbalances if at all possible.
- Keep source impedances as low as possible to minimize resistive loading errors.
- Minimize ground loops. If signal lines are shielded, ground all shields to a common point at the system analog

If the MPC800 is used for multiplexing high level signals of 1V to 10V full scale ranges, the foregoing precautions should be taken, but the parameters are not as critical as for low level signal applications.

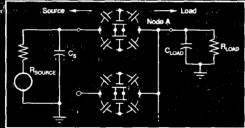


FIGURE 3. Settling Time Effect (Single-ended).

SETTLING TIME

Settling time is the time required for the multiplexer to reach and maintain an output within a specified error band of its final value in response to a step input. The settling time of the MPC800 is primarily due to the channel capacitance and a combination of resistances which include the source and load resistances.

If the parallel combination of the source and load resistance time parameter combination of the source and total restrained times the total channel capacitance is kept small, then the settling time is primarily affected by internal RCs. For the MPC800, the internal capacitance is approximately 20pF differential or 40pF single-ended. With external capacitance neglected, the time constant of source resistance in parallel and the constant of source resistance in parallel and the constant of source and the internal capacitance should be with load resistance and the internal capacitance should be kept less than 40ns. This means the source resistance should be kept to less than $2k\boldsymbol{\Omega}$ (assume high load resistance) to maintain fast settling times.

ACCESS TIME

This is the time required for the CMOS FET to turn ON after a new digital code has been applied to the Channel Address inputs. It is measured from the 50 percent point of the address input signal to the 90 percent point of the analog signal seen at the output for a 10V signal change between

CROSSTALK

Crosstalk is the amount of signal feedthrough from the 7 differential or 15 signal-ended OFF channels appearing at the multiplexer output. Crosstalk is caused by the voltage divider effect of the OFF channel, OFF resistance, and junction capacitances in series with the R_{ON} and R_{SOURCE} impedance of the ON channel. Crosstalk is measured with a

FIGURE 4. Settling and Common-Mode Effects (Differential).

Or, Call Customer Service at 1-800-548-6132 (USA Only)

20Vp-p, 1000Hz sine wave applied to all OFF channels. The crosstalk for these multiplexers is shown in the Typical Performance Curves

COMMON-MODE REJECTION (Differential Mode Only)

The matching properties of the load, multiplexer and source affect the common-mode rejection (CMR) capability of a differentially multiplexed system. CMR is the ability of the multiplexer and input amplifier to reject signals that are common to both inputs, and to pass on only the signal difference to the output. Protection is provided for common-mode signals of $\pm 2V$ above the power supply voltages with no damage to the analog switches.

The CMR of the MPC800 and Burr-Brown's model 3630 instrumentation amplifier is 120dB at DC to 10Hz with a 6dB/octave rolloff to 80dB at 1000Hz. This measurement of CMR is shown in the Typical Performance Curves and is made with a Burr-Brown model 3630 instrumentation amplifier connected for a signal of 1000 and with source unbalance of $10k\Omega$. $1k\Omega$ and no unbalance.

Factors which will degrade multiplexer and system DC CMR are:

- · Amplifier bias current and differential impedance mismatch.
- Load impedance mismatch.
- Multiplexer impedance and leakage current mismatch, · Load and source common-mode impedance.

AC CMR rolloff is determined by the amount of commonmode capacitances (absolute and mismatch) from each signal line to ground. Larger capacitances will limit CMR at higher frequencies; thus, if good CMR is desired at higher frequencies, the common-mode capacitances and unbalance of signal lines and multiplexer to amplifier wiring must be minimized. Use twisted-shielded pair signal lines wherever possible.

INSTALLATION AND OPERATING INSTRUCTIONS

The ENABLE input, pin 18, is included for expansion of the number of channels on a single-node as illustrated in Figure 5. With the ENABLE line at a logic 1, the channel is selected by the Channel Select Address (shown in the Truth Tables). If ENABLE is at logic 0, all channels are turned OFF, even if the Channel Address Lines are active. If the ENABLE line is not to be used, simply tie it to logic 1.

For the best settling time, the input wiring and interconnections between multiplexer output and driven devices should be kept as short as possible. When driving the digital inputs from TTL, open collector output with pullup resistors are

To preserve common-mode rejection of the MPC800 use twisted-shielded pair wire for signal lines and inter-tier

connections and/or multiplexer output lines. This will help common-mode capacitance balance and reduce stray signal pickup. If shields are used, all shields should be connected as close as possible to system analog common or to the common-mode guard driver.

LOGIC LEVELS

The logic level is user-programmable as either TTL-compatible by leaving the V_{REF} (pin 13) open or CMOS-compatible by connecting the V_{REF} to V_{DD} (CMOS supply voltage).

16-CHANNEL SINGLE-ENDED OPERATION

To use the MPC800 as a 16-channel single-ended multiplexer, output A (pin 28) is connected to output B (pin 2) to form a single output, then all four address lines (A_0, A_1, A_2) and A₃) are used to address the correct channel.

The MPC800 can also be used as a dual 8-channel singleended multiplexer by not connecting output A and B, but then only one channel in one of the multiplexers can be addressed at a time.

8-CHANNEL DIFFERENTIAL OPERATION

To use the MPC800 as an 8-channel differential multiplexer connect address line A_3 to $-V_{CC}$, then use the remaining three address lines $(A_0, A_1, \text{ and } A_2)$ to address the correct channel. The differential inputs are the pairs of A_1 and B_1 , A_2 and B₂, etc.

TRUTH TABLES

MPC800 used as 16-channel single-ended multiplexer or 8channel dual multiplexer.

USE A, AS DIGITAL ADDRESS INPUT					"ON" CH	ANNEL TO
ENABLE	A ₃	Ag	A,	A _o	OUT A	OUT B
L	Х	X	Х	Х	None	None
H	L	L	L	L	1A	None
Ξ	i.	L	L	H	2A	None
Ξ	L	L	Н	L	3A	None
Н	L	L	Н	Н	4A	None
Н	Ĺ	Н	L	L	5A	None
Н	L	Н	L	Н	6A	None
Н	L	Н	Н	L	7A	None
Ξ	L	Н	н	Н	8A	None
Н	Н	L	L	L	None	18
Н	Н	L	L	Н	None	2B
H	Н	L .	Н	L	None	3B
Н	Н	L	Н	Н	None	4B
Н	H	Н	L	L	None	5B
Н	Н	H	L	Н	None	6B
Н	Н	Н	Н	L	None	7B
Н	Н	H	Н	Н	None	8B

For 16-channel single-ended function, tie "out A" to "out B", for dual 8-channel function use the A₂ address pin to select between MUX A and MUX B, where MUX A is selected with A₃ low.

MPC800 used as 8-channel differential multiplexer.

	A, CONN	"ON" CHANNEL TO			
ENABLE	A ₂	A,	A _o	OUT A	OUTB
L	Х	X	Х	None	None
н	L	L	Ł	1A	18
Н	L	L	Н	2A	2B
H	L	Н	L	3Á	3 B
Н	L	Н	Н	4A	4B
Н	Н		L	5A	5B
Н	Н	L	H	6A	6B
Н	Н	Н	L	7A	7B
التسينات					

CHANNEL EXPANSION

Single-Tier Expansion
Up to four MPC800s can be connected to a single node to form a 64-channel single-ended multiplexer or up to eight MPC800s can be connected to two nodes to form a 64-channel differential multiplexer. Programming is accomplished with a 6-bit address and a 1-of-4 decoder for 64-channel single-ended expansion (see Figure 5), and an 8-bit address and a 1-of-8 decoder for 64-channel differential materials. tial expansion. The decoder drives the enable inputs of the MPC800, turning on only one multiplexer at a time.

Two-Tier Expansion
Up to seventeen MPC800s can be connected in a two-tier structure to form a 256-channel single-ended multiplexer (see Figure 6) or up to nine MPC800s can be connected in a two-tier structure to form a 64-channel differential multi-plexer. Programming is accomplished with an 8-bit address.

Single vs Multitiered Channel Expansion
In addition to reducing programming complexity, two-tier configuration offers the added advantages over single-node expansion of reduced OFF channel current leakage (reduced offset), better CMR, and a more reliable configuration if a channel should fail in the ON condition (short). Should a channel fail ON in the single-node configuration, data cannot be taken from any channel, whereas only one-channel group is failed (8 or 16) in the multitiered configuration.

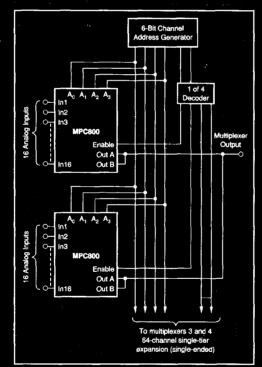


FIGURE 5. 32- to 64-Channel, Single-tier Expansion.

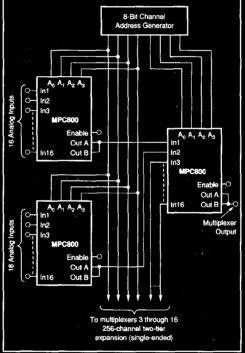


FIGURE 6. Channel Expansion up to 256 Channels Using 16 X 16 Two-tiered Expansion.