MP7545B

CMOS
Buffered Multiplying 12-Bit Digital-to-Analog Converter

FEATURES

- Full Four Quadrant Multiplication
- 12-Bit Resolution
- Gain Error Tempco (2 ppm $/{ }^{\circ} \mathrm{C}$ max.)
- Latch-Up Free
- Single +5 V to +15 V Supply

TTL/15 V CMOS Compatible

- Rugged 2000 V ESD Protection
- 3 V Version: MP75L45
- TTL/5 V VMOS Version: MP7645B

APPLICATIONS

- Industrial Automation
- Automatic Test Equipment
- Disk Drive Servo Systems
- Digital/Synchro Conversion
- Programmable Gain Amplifiers
- Ratiometric A/D Conversion
- Function Generation
- Digitally Controlled Fiiters

GENERAL DESCRIPTION

The MP7545B is a 12 -bit CMOS multiplying DAC with onboard data latches. It is loaded by a single 12 -bit wide word and interfaces directly to most 12 -and 16 -bit bus systems. Data is loaded into the input latches under the control of the CS and WR
inputs; tying these control inputs low makes the input latches transparent allowing direct unbuffered operation of the DAC.

The MP7545B is particularly suitable for single supply operaThe MP7545B is particularly suitable for single supply
tion and applications with wide temperature variations.
The MP7545B can be used with any supply voltage from +5 V to +15 V . With CMOS logic levels at the inputs the device dissipates less than 0.5 mW for $\mathrm{V}_{D D}=+5 \mathrm{~V}$.

SIMPLIFIED BLOCK DIAGRAM

MP7545B

IRPEXAR
ORDERING INFORMATION

Package Type	Temperature Range	Part No.	INL (LSB)	DNL (LSB)	Gain Error (LSB)
Plastic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7545BKN	± 1	± 1	± 3
Plastic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7545BLN	$\pm 1 / 2$	± 1	± 2
SO:C	-40 to $+85^{\circ} \mathrm{C}$	MP7545BKS	± 1	± 1	± 3
SO:C	-40 to $+85^{\circ} \mathrm{C}$	MP7545BLS	$\pm 1 / 2$	± 1	± 2
PLCC	-40 to $+85^{\circ} \mathrm{C}$	MP7545BKP	± 1	± 1	± 3
PLCC	-40 to $+85^{\circ} \mathrm{C}$	MP7545BLP	$\pm 1 / 2$	± 1	± 2

PIN CONFIGURATIONS See Packaging Section for Package Dimensions

PIN OUT DEFINITIONS

PIN NO.	NAME	description	PIN No.	NAME	DESCRIPTION
1	lout	Output Current	11	DB4	Data Input Bit 4
2	AGND	Analog Ground	12	DB3	Data Input Bit 3
3	DGND	Digital Ground	13	DB2	Data Input Bit 2
4	DB11	Data Input Bit 11 (MSB)	14	DB1	Data Input Bit 1
5	DB10	Data Input Bit 10	15	DB0	Data Input Bit O (LSB)
6	DB9	Data Input Bit 9	16	CS	Chip Select (Active Low)
7	DB8	Data Input Bit 8	17	WR	Write (Active Low)
8	DB7	Data Input Bit 7	18	$V_{D D}$	Digital Supply Voltage
9	DB6	Data Input Bit 6	19	$V_{\text {feF }}$	Reference Input
10	DB5	Data Input Bit 5	20	$\mathrm{P}_{\text {FB }}$	Feedback Resistor

ELECTRICAL CHARACTERISTICS
$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$ unless otherwise noted)

Parameter	Symbol	$25^{\circ} \mathrm{C}$			Tmin to Min	$\underset{\operatorname{Max}}{\operatorname{Tmax}}$	Units	Test Conditions/Comments
STATIC PERFORMANCE ${ }^{1}$								
Resolution (All Grades)	N	12			12		Bits	
integral Non-Linearity	INL						LSB	End Point Linearity
K				± 1		± 1		
L				$\pm 1 / 2$		$\pm 1 / 2$		
Differential Non-Linearity	DNL						LSB	
K				± 1		± 1		
L				± 1		± 1		
Gain Error	GE						LSB	Using internal $\mathrm{R}_{\text {FB }}$
K				± 3		± 4		
L				± 2		± 3		
Gain Temperature Coefficient ${ }^{2}$	$\mathrm{TC}_{\mathrm{GE}}$					± 2	ppm/ $/{ }^{\circ} \mathrm{C}$	Δ Gain/ Δ Temperature
Power Supply Rejection Ratio	PSRR			± 50		± 100	ppm/\%	$\left\|\Delta \mathrm{Gain}^{\prime} / \Delta V_{D D}\right\| \Delta V_{D D}= \pm 5 \%$
Output Leakage Current	lout							
K, L				± 10		± 50		
DYNAMIC PERFORMANCE ${ }^{2}$								$R_{L}=100 \Omega, C_{L}=13 \mathrm{pF}$
Current Settling Time				1		1	$\mu \mathrm{s}$	Full Scale Change to $1 / 2$ LSB
AC Feedthrough at lout	$\mathrm{F}_{\text {T }}$		5				mVp-p	$\mathrm{V}_{\text {REF }}=10 \mathrm{kHz}, 20 \mathrm{Vp}$-p sinewave.
Propagation Delay	tpd		50					From 50% of digital input to 90%
REFERENCE INPUT								
Input Resistance	RIN	7		25	7	25	$\mathrm{k} \Omega$	
DIGITAL INPUTS ${ }^{3}$								
Logical "1" Voltage		2.4			2.4			
Logical "0" Voltage	$V_{\text {II }}$			0.8		0.8	v	
Input Leakage Current	lıKg			± 1		± 10	$\mu \mathrm{A}$	
Input Capacitance ${ }^{2}$								
Data	$\mathrm{Cl}_{\mathrm{IN}}$			5		5	pF	
Control	$\mathrm{Clin}^{\text {IN }}$			20		20	pF	
ANALOG OUTPUTS								
Output Capacitance ${ }^{2}$								
	Cout		100				pF	DAC Inputs all 1's
	Cout		50				pF	DAC inputs all 0 's

MP7545B

ELECTRICAL CHARACTERISTICS (CONT'D)

Parameter	Symbol	Min	$\begin{aligned} & \hline 25^{\circ} \mathrm{C} \\ & \mathrm{Typ} \end{aligned}$	Max	Tmin to Min	$\underset{\operatorname{Max}}{T \max }$	Units	Test Conditions/Comments
POWER SUPPLY ${ }^{5}$								
Functional Voltage Range Supply Current	$\begin{aligned} & V_{D D} \\ & l_{D D} \end{aligned}$	5		$\begin{array}{r} 15 \\ 1 \end{array}$	5	$\begin{array}{r} 15 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{~mA} \end{aligned}$	All digital inputs $=0 \mathrm{~V}$ or V_{DD}
SWITCHING CHARACTERISTICS², 4								
Chip Select to Writa Set-Up Time	$\mathrm{tos}^{\text {cter }}$	100						
Chip Select to Write Hold Time Data Valid to Write Set-Up Time	$\mathrm{t}_{\text {ch }}$	\%					ns	
Data Valid to Write Hold Time	$t_{\text {bH }}$	10					ns	
Write Pulse Width	twr	100					ns	

NOTES:
Full Scale Range (FSR) is 10 V for unipolar mode.
Guaranteed but not production tested.
Digital input levels should not go below ground or exceed the positive supply voitage, otherwise damage may occur. See timing diagram.
Specified values guarantee functionality. Refer to other parameters for accuracy

Specifications are subject to change without notice

ZPEXAR

MP7545B
ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}$ unless otherwise noted)

Parameter	Symbol	Min	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Typ } \end{aligned}$	Max	$\begin{gathered} \text { Tmin to } \operatorname{Tmax}_{\text {Max }} \end{gathered}$	Units	Test Conditions/Comments
STATIC PERFORMANCE ${ }^{1}$ Resolution (All Grades) Integral Non-Linearity (Relative Accuracy) K L Differential Non-Linearity K L Gain Error K L Gain Temperature Coofficient ${ }^{2}$ Power Supply Rejection Ratio Output Leakage Current K, L	N INL DNL GE $\mathrm{TC}_{\mathrm{GE}}$ PSRR lout	12		± 1 $\pm 1 / 2$ ± 1 ± 1 ± 6 ± 5 ± 50 ± 10	12 $\begin{array}{r} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \\ \pm 1 \\ \pm 7 \\ \pm 6 \\ \pm 2 \\ \pm 100 \\ \pm 50 \end{array}$	Bits LSB LSB LSB ppm $/{ }^{\circ} \mathrm{C}$ ppm/\% nA	End Point Linearity Using Internal R_{FB} Δ Gain/ Δ Temperature $\mid \Delta$ Gain $/ \Delta V_{D D} \mid \Delta V_{D D}= \pm 5 \%$
DYNAMIC PERFORMANCE ${ }^{2}$ Current Settling Time AC Feedthrough at lout Propagation Delay	$\begin{aligned} & t_{S} \\ & F_{T} \\ & t_{P D} \end{aligned}$		5 50	1	1	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~ns} \end{aligned}$	$R_{L}=100 \Omega, C_{L}=13 \mathrm{pF}$ Full Scale Change to $1 / 2$ LSB $V_{\text {REF }}=10 \mathrm{kHz}, 20 \mathrm{Vp}$-p sinewave. From 50% of digital input to 90% of final analog output current
REFERENCE INPUT Input Resistance	RIN	7		25	25	k Ω	
DIGITAL INPUTS ${ }^{3}$ Logical "1" Voltage Logical "0" Voltage Input Leakage Current Input Capacitance ${ }^{2}$ DBO-DB11 WR, CS	$\begin{gathered} V_{\mathrm{IHH}} \\ \mathrm{~V}_{\mathrm{IL}} \\ \mathrm{LKG}^{\prime} \\ \mathrm{C}_{\mathrm{IN}} \\ \mathrm{C}_{\mathbb{N}} \end{gathered}$	13.5		$\begin{array}{r} 1.5 \\ \pm 1 \\ 5 \\ 20 \end{array}$	$\begin{array}{rr} 13.5 & 1.5 \\ & \pm 10 \\ & 5 \\ & 50 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & V_{I N}=0 \text { or } V_{D D} \\ & V_{I N}=0 \\ & V_{\text {IN }}=0 \end{aligned}$
ANALOG OUTPUTS Output Capacitance ${ }^{2}$	Cout Cout		$\begin{array}{r} 100 \\ 50 \end{array}$			$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	DAC Inputs all 1's DAC Inputs all O's

MP7545B

ELECTRICAL CHARACTERISTICS (CONT'D)

Parameter	Symbol	Min	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Typ } \end{aligned}$	Max	$T_{\operatorname{Min}} \text { to } T_{\operatorname{Max}}$		Units	Test Conditions/Comments
POWER SUPPLY ${ }^{5}$								
Functional Voltage Range Supply Current	$\underset{V_{D D}}{V_{D D}}$	5		$\begin{array}{r} 15 \\ 1 \end{array}$	5	$\begin{array}{r} 15 \\ 1 \end{array}$	V	All digital inputs $=0$ or V_{DD}
SWITCHING CHARACTERISTICS ${ }^{2,4}$								
Chip Select to Write Set-Up Time	t_{cs}	75					ns	
Chip Select to Write Hold Time	t_{CH}	0					ns	
Data Valid to Write Set-Up Time	tos	100					ns	
Data Valid to Write Hold Time	$\mathrm{t}_{\text {D }}$	10					ns	
Write Pulse Width	twr	75					ns	

NOTES:
Fuil Scaie Range (FSR) is 10 V for unipolar mode and $\pm 10 \mathrm{~V}$ for bipolar
Guaranteed but not production tested.
Digital input leyels should not go below ground or exceed the positive supply voltage, otherwise damage may occu
See timing diagram.
Specified values guarantee functionality. Refer to other parameters for accuracy.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{\mathbf{1}, 2,3}$

Digital Input Voltage to GND GND -0.5 to $\mathrm{VDD}+0.5 \mathrm{~V}$
lout1, lout2 to GND $\ldots \ldots . . .$. GND -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$V_{\text {REF }}$ to GND .. $\pm 25 \mathrm{~V}$
$V_{\text {RFB }}$ to GND

NOTES: Stresses above those listed under "Absolute Maximum Ratin
stress rating only and functional operation at or above this conditions for extended periods may affect device reliability.
Any input for extended periods may affect device reliability. Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clam
(HP5082-2835) from input pin to the supplies. All inputs have transients outside the supplies of less than 100 mA for less than $100 \mu \mathrm{~s}$.
3 GND refers to AGND and DGND.

ZPEXAR

WRITE CYCLE TIMING DIAGRAM

APPLICATION NOTES

Refer to Section 8 for Applications Information

Digital Section

Figure 2. shows the digital structure for one bit.

Figure 1. Digital Input Structure from CS and WR.

The input buffers are simple CMOS inverters designed such that when the MP7545B is operated with $V_{D D}=5 \mathrm{~V}$, the buffers convert TTL input levels (2.4 V and 0.8 V) into CMOS logic lev els. When $V_{\text {IN }}$ is in the region of 2.0 volts to 3.5 volts the input els. When $V_{\mathbb{N}}$ is in the region of 2.0 volts to 3.5 volts the inpu buffers operate in their linear region and draw current from the mended that the digital input voltages be as close to the supply rails (VDD and DGND) as is

The MP7545B may be operated with any supply voltage in the range $5 \leq V_{D D} \leq 15$ volts. With $V_{D D}=+15 \mathrm{~V}$ the input logic levels are CMOS compatible only, i.e., 1.5 V and 13.5 V .

MICROPROCESSOR INTERFACING OF THE MP7545B

The MP7545B can interface directly to both 8 - and 16 -bit microprocessors via its 12 -bit wide data latch using standard CS and WR control signals.

A typical interface circuit for an 8-bit processor is shown in Figure 3. This arrangement uses two memory addresses, one for the lower 8 bits of data to the DAC and one for the upper 4 bits of data into the DAC via the latch.

Figure 3. 8-Bit Processor to MP7545B Interface

Figure 4. shows an alternative approach for use with 8 -bit processors which have a full 16 -bit wide address bush such as $6800,8080, \mathbf{Z 8 0}$. This technique uses the 12 lower address ines of the processor address bus to supply data to the DAC, thus each MP7545B connected in this way uses 4 k bytes of ad

Figure 4. Connecting the MP7545B to 8-Bit Processors via the Address Bus
dress locations. Data is written to the DAC using a single memory write instruction. The address field of the instruction is orory write instruction. The address field of the instruction is orand the upper 4 bits contain the address of the 4 k block at which the DAC resides.

PERFORMANCE CHARACTERISTICS

Graph 1. Linearity Error vs. Digital Input Code

Graph 2. Linearity Error vs. Digital Input Code

