MN863584-D

1. TYPE

Gate driver IC with 244-pin output for TFT LCD

2. OVERVIEW

* Number of output channels : 244 outputs
* Driver operating frequency : 500 kHz max.
* LCD drive voltage $\quad: \quad \mathrm{V}_{\mathrm{EE}}+40 \mathrm{~V}$ max.
* Driver output level : Binary

3. FEATURE

O Incorporating a bidirectional shift register function.

4. BLOCK DIAGRAM

5. FUNCTIONS

5-1) LCD Drive Voltage

Negative LCD drive voltage output is possible on the basis of the logic ground voltage, V_{ss}.

5-2) Operation Mode Selection

MODE="H": Positive Logic

The start pulse is fetched at the FX rising edge and the data is shifted.
The carry pulse sy nchronizes with the FX falling edge.
The high-level start pulse corresponds to the V_{GG} display voltage.
MODE="L": Negative Logic
The start pulse is fetched at the FX falling edge and the data is shifted at the rising edge.
The display voltage will be output only when the FX level is high.
The carry pulse sy nchronizes with the FX rising edge.
The low-level start pulse corresponds to the V_{GG} display voltage.

5-3) Selection of Shift Direction and Number of Outputs
The shift direction can be set with UD input.
244-output mode

UD	Start Pulse	Data Shift Direction	Carry Pulse
$\mathrm{UD}=$ "H"	STVD	$\mathrm{X} 1 \rightarrow 1 \mathrm{X} 2 \rightarrow \mathrm{X} 3 \cdots \mathrm{X} 242 \rightarrow \mathrm{X} 243 \rightarrow \mathrm{X} 244$	STVU
$\mathrm{UD}=$ "L"	STVU	$\mathrm{X} 244 \rightarrow \mathrm{X} 243 \rightarrow \mathrm{X} 242 \cdots \mathrm{X} 3 \rightarrow \mathrm{X} 2 \rightarrow \mathrm{X} 1$	STVD

5-4) Non-Display Function

OEVSEL OEV	OEV="H"	OEV="L"
OEVSEL="H"	ALL V $\mathrm{EE}_{\mathrm{EE}}$ output	Normal output
OEVSEL="L"	Normal output	ALL $V_{\text {EE }}$ output

Set the OEVSEL to high level and apply high-level input to the OEV. Alternatively, set the OEVSEL to low level and apply low-level input to the OEV. Then all the outputs will be set to non-display level regardless of the data in the shift register. This function operates without being synchronized with the FX.
The above will not reset the shift data.

6. PIN DESCRIPTIONS

Pin Name	I/O	Function	Description		
FX	I	Shiff register clock input pin	Shift clock of the internal shift register		
UD	I	Input pin for selecting the right shift or left shift direction	$\begin{aligned} & \text { UD="H": X1 } \rightarrow \mathrm{X} 244 \\ & \text { UD="L": X244 } \rightarrow \mathrm{X} 1 \end{aligned}$		
STVD / STVU	I/O	Start pulse input and carry pulse output pins		STVD	STVU
			UD="H"	Input	Output
			UD='L"	Output	Input
OEVSEL	I	Input pin for selecting OEV	OEVSEL="H": OEV=Active high OEVSEL="L": OEV=Active low		
OEV	I	Input pin for selecting input polarity	When OEVSEL and OEV pins are set to high level or low level, the corresponding LCD drive output pins will be at the level of OFFpotential $\left(\mathrm{V}_{\mathrm{EE}}\right)$ without being synchronized with the FX regardless of the contents of the data in the shiff register. Not reset.		
MODE	I	Input pin for selecting MODE	MODE="H" : Positive-logic operation MODE="L": Negative-logic operation		
X1 to X244	O	LCD drive output pins	V_{GG} or V_{EE} voltage level is output according to OEV, OEVSEL, and FX inputs and the data in the shiff register.		
V_{GG}	Power supply	LCD drive output power supply LCD drive power supply 1	Power supply for the level shifter and output buffer This power supply drives LCD.		
V_{EE}	Power supply	V_{GG} systemground LCD drive power supply 2	Ground Provides this pin with LCD drive voltage.		
V_{DD}	Power supply	Logic power supply	Power supply for the logic circuit		
V_{SS}	Power supply	V_{DD} system ground	Low level reference voltage for logic		
COM1 to COM4		Through wiring pins	Pins which have same name at the input side and output side are connected. They are not connected to a circuit.		
dummy1 to dummy8		Dummy pads	Dummy pads only located. They are not connected to a circuit.		

7. BASIC WAVEFORM

When MODE="H," OEVSEL="H," and UD="H"
(): UD="L"

When MODE="L," OEVSEL="H," and UD="H"
(): UD="L"

When MODE="H," OEVSEL="L," and UD="H" ():UD="L"

When MODE="L," OEVSEL="L," and UD="H"
(): UD="L"

PRODUCT STANDARDS

A. ABSOLUTE MAXIMUM RATINGS

Parameter		Sy mbol	Rating	Unit
A1	Supply voltage 1	$\mathrm{~V}_{\mathrm{DD}}$	-0.3 to +7.0	V
A2	Supply voltage 2	V_{GG}	-0.3 to +44	V
A 3	Supply voltage 3	V_{EE}	$\mathrm{V}_{\mathrm{GG}}-44$ to +0.3	V
A4	Digital input voltage	V_{I}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
A5	Operating storage temperature	$\mathrm{T}_{\mathrm{opr}}$	-30 to +85	${ }^{\circ} \mathrm{C}$
A 6	Operating ambient temperature	T_{a}	-20 to +75	${ }^{\circ} \mathrm{C}$
A 7	Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +120	${ }^{\circ} \mathrm{C}$

Note 1) The absolute maximum ratings are the limit values beyond which the IC may be broken. They don't assure operation.
Note 2) The operating storage temperature is the temperature range beyond which the IC may be broken. They don't assure operation.
Note 3) The values specified in the Product Standards are guaranteed on condition that the IC is applied to the manufacturer's standard packages.
Note 4) Set the drive voltage to satisfy the following condition when the IC is turned on and turned off and while the IC is operating.
$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{GG}}$
Note 5) If voltage is improperly applied to the IC when the IC is turned on, a high current may flow to the IC, and the IC may be totally broken.
When turning on the IC, apply V_{DD} first. Then apply $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{GG}}$, and the logic signal after V_{DD} has risen to 90% of the set value.
The V_{GG} input, V_{EE} input, and logic signal input can be turned on in any order, provided that the following conditions are satisfied for the protection of the V_{GG} power supply.
A) The IC is in normal operation at the rising edge of V_{GG} (i.e., the V_{GG} output is selected for only a single output) or all the outputs are in V_{EE} output condition.
B) All the inputs are not open and are grounded by a low impedance path until each power supply and the logic signal rise.

Note 6) Activate the OEV , however, if the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{EE}}$, and V_{GG} power supplies are turned on simultaneously.

B. OPERATING CONDITIONS

$$
\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{Cto}+75^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

Parameter		Symbol	Condi- tions	Rating			Unit
B1	Operating supply voltage 1			2.6	2.9	3.6	
B2	Operating supply voltage 2	$\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{EE}}$		10		40	V
B3	Operating supply voltage 3	V_{GG}		V_{DD}		$\mathrm{V}_{\mathrm{EE}}+40$	V
B4	Operating supply voltage 4	V_{EE}		$\mathrm{V}_{\mathrm{GG}}-40$		$\mathrm{~V}_{\mathrm{DD}}-10$	V

* The delay time of driving output is not guaranteed in the following conditions.

Symbol	Rating			Unit
	Min	Typ	Max	
V_{DD}	2.6	2.9	3.6	V
$\mathrm{~V}_{\mathrm{GG}}$	V_{DD}		$\mathrm{V}_{\mathrm{EE}}+20$	V
$\mathrm{~V}_{\mathrm{EE}}$	$\mathrm{V}_{\mathrm{GG}}-10$		$\mathrm{~V}_{\mathrm{DD}}-5$	V

Operating voltage range of V_{EE} and V_{GG} when $\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}$

- The values specified in the Product Standards are guaranteed on condition that the IC is applied to the manufacturer's standard packages.

C. DC CHARACTERISTICS

(1) DC Characteristics

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

	Parameter	Sy mbol	Conditions	Rating			Unit
				Min	Typ	Max	
C1	Operating supply current $\left(\mathrm{V}_{\mathrm{DD}}\right)$	I_{DD}	$\begin{aligned} & \mathrm{f}_{\mathrm{FX}}=20.0 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GG}}=15 \mathrm{~V} \\ & \text { No-load output } \end{aligned}$			50	$\mu \mathrm{A}$
C2	Operating supply current $\left(\mathrm{V}_{\mathrm{GG}}\right)$	I_{GG}				300	$\mu \mathrm{A}$
C3	Quiescent supply current (V_{DD})	I_{DS}	In standby mode,$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GG}}=15 \mathrm{~V} \end{aligned}$			10	$\mu \mathrm{A}$
C4	Quiescent supply current $\left(\mathrm{V}_{\mathrm{GG}}\right)$	I_{GS}				10	$\mu \mathrm{A}$

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

Parameter	Symbol	Condi- tions	Rating			Unit
			Typ	Max		

1) Input pins (RL, FX, OEV, OEVSEL, MODE)

C 5	High-level input voltage	$\mathrm{V}_{\mathrm{IH} 1}$		0.8×1.65		$\mathrm{~V}_{\mathrm{DD}}$	V
C 6	Low-level input voltage	$\mathrm{V}_{\mathrm{IL} 1}$		0		0.2×1.65	V
C 7	Input leakage current	$\mathrm{I}_{\mathrm{L} 11}$		-10		10	$\mu \mathrm{~A}$

2) I/O pins (STVD, STVU)

C 8	High-level input voltage	$\mathrm{V}_{\mathrm{IH} 3}$		0.8×1.65		$\mathrm{~V}_{\mathrm{DD}}$	V
C 9	Low-level input voltage	$\mathrm{V}_{\mathrm{IL} 3}$		0		0.2×1.65	V
C 10	High-level output voltage	V_{OH}	$-100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{DD}}-0.4$			V
C 11	Low-level output voltage	V_{OL}	$100 \mu \mathrm{~A}$			0.4	V

- The values specified in the Product Standards are guaranteed on condition that the IC is applied to the manufacturer's standard packages.

Parameter						$20^{\circ} \mathrm{C}$	= 0	
		Symbol	Conditions	Rating			Unit	
		Min		Typ	Max			
3) LCD drive output pins (X1 to X244)								
C12	Output leakage current		$\mathrm{V}_{\text {LO1 }}$		-50		50	$\mu \mathrm{A}$
C13	Output ON-state resistance	$\mathrm{R}_{\mathrm{ON}}-\mathrm{V}_{\mathrm{GG}}$	$\mathrm{V}_{\mathrm{GG}}=15 \mathrm{v}$ $\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{~V}$ $\mathrm{V}_{\mathrm{OM}}=\mathrm{V}_{\mathrm{GG}}-0.5 \mathrm{~V}$ V_{OM} is the voltage that is applied to X1 to X244 pins.		600	1000	Ω	
		$\mathrm{R}_{\mathrm{ON}}-\mathrm{V}_{\mathrm{OFF}}$	$\begin{aligned} & \mathrm{v}_{\mathrm{GG}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OM}} \text { is he volage that } \\ & \text { is applied to } \mathrm{X} 1 \text { to } \mathrm{X} 244 \\ & \text { pins. } \end{aligned}$		400	1000	Ω	
4) Through wiring (COM1 to COM4)								
C14	wiring resistance	$\mathrm{R}_{\mathrm{com}}$				10	Ω	

- The values specified in the Product Standards are guaranteed on condition that the IC is applied to the manufacturer's standard packages.
(2) AC Characteristics

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$								
Parameter		Symbol	Conditions	Rating			Unit	
		Min		Typ	Max			
C15	Clock cycle		t_{FX}		2			$\mu \mathrm{s}$
C16	Clock high-level pulse width	t_{wH}		500			ns	
C17	Clock low-level pulse width	t_{wL}		500			ns	
C18	STV data setup time	$\mathrm{t}_{\text {su }}$		100			ns	
C19	STV data hold time	t_{h}		300			ns	
C20	UD setup time	$\mathrm{t}_{\text {su1 }}$		100			ns	
C21	UD hold time	$\mathrm{t}_{\mathrm{h} 1}$		300			ns	
C22	MODE setup time	$\mathrm{t}_{\text {su1 }}$		300			ns	
C23	M ODE hold time	$\mathrm{t}_{\mathrm{h} 1}$		300			ns	
C24	STV output delay time	$\mathrm{t}_{\mathrm{pd} 1}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			350	ns	
C25	Xn output delay time	$\mathrm{t}_{\mathrm{pd} 2}$	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$			1	$\mu \mathrm{s}$	

- The values specified in the Product Standards are guaranteed on condition that the IC is applied to the manufacturer's standard packages.

AC Characteristics Timing Chart

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this book is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license.
(3) We are not liable for the infringement of rights owned by a third party arising out of the use of the product or technologies as described in this book.
(4) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(5) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(7) When using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged.
(8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

