FAIRCHILD

SEMICONDUCTOR

MM74HC04 Hex Inverter

General Description

The MM74HC04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits.

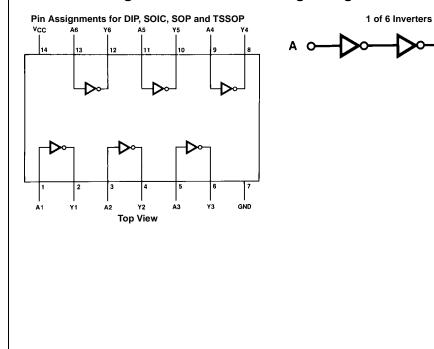
The MM74HC04 is a triple buffered inverter. It has high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs

are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

September 1983

Revised February 1999

Features


- Typical propagation delay: 8 ns
- Fan out of 10 LS-TTL loads
- \blacksquare Quiescent power consumption: 10 μW maximum at room temperature
- Low input current: 1 µA maximum

Ordering Code:

Order Number	Package Number	Package Description			
MM74HC04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow			
MM74HC04SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.5mm Wide			
MM74HC04MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HC04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Connection Diagram

Logic Diagram

www.fairchildsemi.com

© 1999 Fairchild Semiconductor Corporation DS005069.prf

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V_{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	2	6	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T_A)	-40	+85	°C	
Input Rise or Fall Times				
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns	
$V_{CC} = 4.5V$		500	ns	
$V_{CC} = 6.0V$		400	ns	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

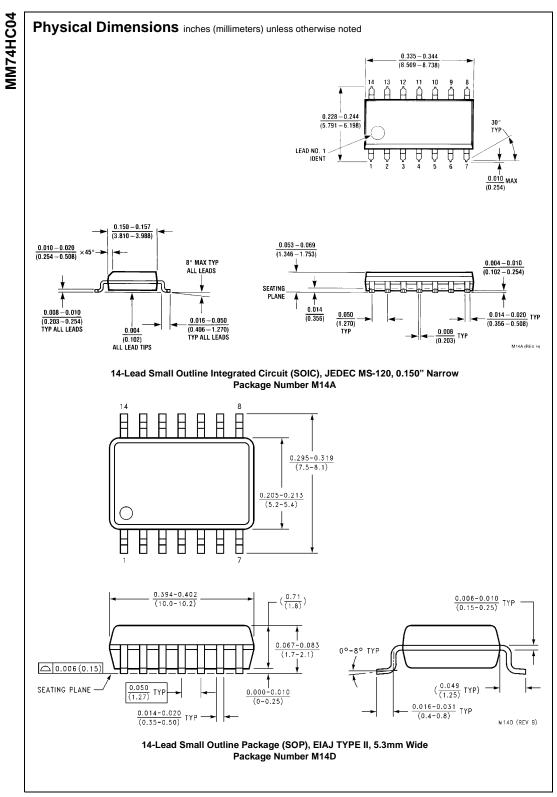
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_A{=}{-}40$ to $85^\circ C$	$T_A = -55 \ to \ 125^\circ C$	Units
Symbol			*CC	Тур		Guaranteed L	imits	UnitS
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						

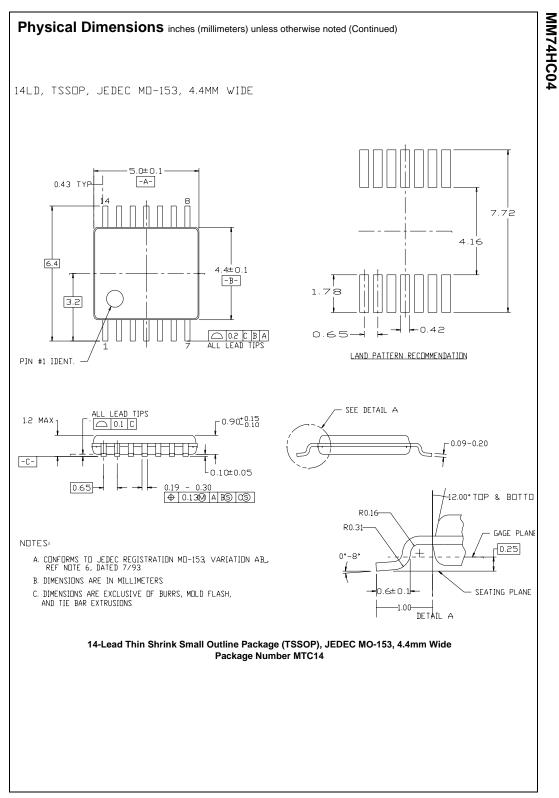
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

www.fairchildsemi.com

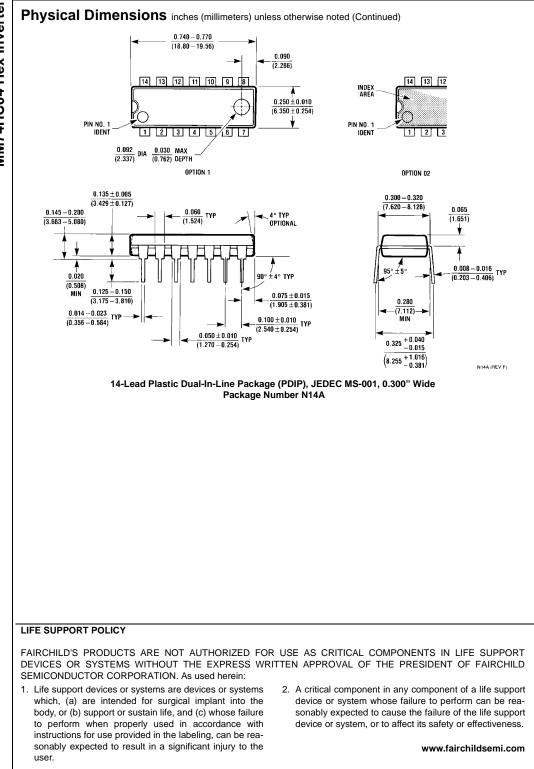

-	ectrical Characteristic $r_A = 25^{\circ}C, C_I = 15 \text{ pF}, t_r = t_f = 6 \text{ ns}$	S			
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		8	15	ns
AC El	ectrical Characteristic	S	•		

 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_f = t_f = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	V _{cc}	T _A = 25°C		$T_{A}=-40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
		Conditions	•00	Typ Guaranteed Limits			Units		
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	55	95	120	145	ns	
	Delay		4.5V	11	19	24	29	ns	
			6.0V	9	16	20	24	ns	
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns	
	and Fall Time		4.5V	8	15	19	22	ns	
			6.0V	7	13	16	19	ns	
C _{PD}	Power Dissipation	(per gate)		20				pF	
	Capacitance (Note 5)								
CIN	Maximum Input			5	10	10	10	pF	
	Capacitance								


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

www.fairchildsemi.com



www.fairchildsemi.com

4

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.