# National Semiconductor

## MM54C32/MM74C32 Quad 2-Input OR Gate

#### **General Description**

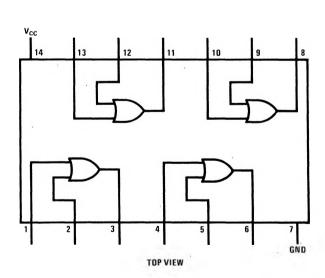
Employing complementary MOS (CMOS) transistors to achieve low power and high noise margin, these gates provide the basic functions used in the implementation of digital integrated circuit systems. The N and P-channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No dc power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge damage.

#### **Features**

Low power

**TTL** compatibility

Wide supply voltage rangeGuaranteed noise margin


3.0V to 15V

0.45 V<sub>CC</sub> (typ.)

High noise immunity

fan out of 2 driving 74L

#### **Connection Diagram**



#### Absolute Maximum Ratings (Note 1)

| Voltage at Any Pin          | -0.3V to V <sub>CC</sub> + 0.3V |
|-----------------------------|---------------------------------|
| Operating Temperature Range |                                 |
| MM54C32                     | -55℃to +125℃                    |
| MM74C32                     | -40°Cto +85°C                   |
| Storage Temperature Range   | -65°C to +150°C                 |

| Package Dissipation                      | 500 mW      |
|------------------------------------------|-------------|
| Operating V <sub>CC</sub> Range          | 3.0V to 15V |
| Absolute Maximum V <sub>CC</sub>         | 18V         |
| Lead Temperature (Soldering, 10 seconds) | 300°C       |

#### **DC Electrical Characteristics**

Min/max limits apply across temperature range unless otherwise noted.

|                     | Parameter                                        | Conditions                                                                      | Min.                                         | Тур.     | Max.        | Units  |
|---------------------|--------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|----------|-------------|--------|
|                     | CMOS to CMOS                                     | · · · · · · · · · · · · · · · · · · ·                                           |                                              |          | · · · · · · |        |
| V <sub>IN(1)</sub>  | Logical "1" Input Voltage                        | $V_{CC} = 5.0V$ $V_{CC} = 10V$                                                  | 3.5<br>8.0                                   |          |             | v<br>v |
| V <sub>IN(0)</sub>  | Logical "0" Input Voltage                        | $V_{CC} = 5.0V$ $V_{CC} = 10V$                                                  |                                              |          | 1.5<br>2.0  | v<br>v |
| V <sub>OUT(1)</sub> | Logical "1" Output Voltage                       | $V_{CC} = 5.0 V, I_{O} = -10 \mu A$<br>$V_{CC} = 10 V, I_{O} = -10 \mu A$       | 4.5<br>9.0                                   |          |             | v<br>v |
| V <sub>OUT(0)</sub> | Logical "0" Output Voltage                       | $V_{CC} = 5.0V, I_{O} = 10 \mu A$<br>$V_{CC} = 10V, I_{O} = 10 \mu A$           |                                              |          | 0.5<br>1.0  | v<br>v |
| IIN(1)              | Logical "1" Input Current                        | $V_{CC} = 15 V, V_{IN} = 15 V$                                                  |                                              | 0.005    | 1.0         | μA     |
| IIN(O)              | Logical "0" Input Current                        | $V_{CC} = 15 V, V_{IN} = 0 V$                                                   | - 1.0                                        | -0.005   |             | μA     |
| Icc                 | Supply Current                                   | $V_{CC} = 15V$                                                                  |                                              | 0.05     | 15          | μA     |
|                     | CMOS/LPTTL Interface                             |                                                                                 |                                              |          |             |        |
| V <sub>IN(1)</sub>  | Logical "1" Input Voltage<br>MM54C32<br>MM74C32  | $V_{CC} = 4.5V$<br>$V_{CC} = 4.75V$                                             | V <sub>CC</sub> -1.5<br>V <sub>CC</sub> -1.5 |          | -           | v<br>v |
| V <sub>IN(0)</sub>  | Logical "0" Input Voltage<br>MM54C32<br>MM74C32  | $V_{CC} = 4.5V$<br>$V_{CC} = 4.75V$                                             |                                              |          | 0.8<br>0.8  | v<br>v |
| V <sub>OUT(1)</sub> | Logical "1" Output Voltage<br>MM54C32<br>MM74C32 | $V_{CC} = 4.5 V$ , $I_O = -360 \mu A$<br>$V_{CC} = 4.75 V$ , $I_O = -360 \mu A$ | 2.4<br>2.4                                   |          |             | v      |
| V <sub>OUT(0)</sub> | Logical "0" Output Voltage<br>MM54C32<br>MM74C32 | $V_{CC} = 4.5 V, I_{O} = 360 \mu A$<br>$V_{CC} = 4.75 V, I_{O} = 360 \mu A$     |                                              |          | 0.4         | v      |
|                     | Output Drive (See 54C/74C Fa                     | mily Characteristics Data Sheet                                                 | t) (short circuit                            | current) | •           |        |
| ISOURCE             | Output Source Current<br>(P-Channel)             | $V_{CC} = 5.0 V, V_{OUT} = 0 V$<br>$T_A = 25^{\circ}C$                          | - 1.75                                       | -3.3     |             | mA     |
| SOURCE              | Output Source Current<br>(P-Channel)             | $V_{CC} = 10 V, V_{OUT} = 0 V$ $T_A = 25^{\circ}C$                              | -8.0                                         | - 15     |             | mA     |
| ISINK               | Output Sink Current<br>(N-Channel)               | $V_{CC} = 5.0 V$ , $V_{OUT} = V_{CC}$<br>$T_A = 25^{\circ}C$                    | 1.75                                         | 3.6      |             | mA     |
| ISINK               | Output Sink Current<br>(N-Channel)               | $V_{CC} = 10 V, V_{OUT} = V_{CC}$<br>$T_A = 25^{\circ}C$                        | 8.0                                          | 16       |             | mA     |

### AC Electrical Characteristics $T_A = 25^{\circ}C$ , $C_L = 50 \text{ pF}$ , unless otherwise specified.

| Parameter       |                                                 | Conditions                       | Min. | Тур.     | Max.      | Units    |
|-----------------|-------------------------------------------------|----------------------------------|------|----------|-----------|----------|
| t <sub>pd</sub> | Propagation Delay Time to<br>Logical "1" or "0" | $V_{CC} = 5.0 V$ $V_{CC} = 10 V$ |      | 80<br>35 | 150<br>70 | ns<br>ns |
| CIN             | Input Capacitance                               | Any Input (Note 2)               |      | 5        |           | pF       |
| C <sub>PD</sub> | Power Dissipation Capacitance                   | Per Gate (Note 3)                |      | 15       |           | pF       |

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C<sub>PD</sub> determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note — AN-90.

MM54C32/MM74C32