MM54C90,MM54C93,MM74C90,MM74C93

MM54C90 MM74C90 4-Bit Decade Counter MM54C93 MM74C93 4-Bit Binary Counter

Literature Number: SNOS340A

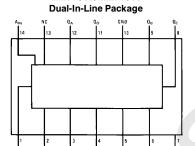
MM54C90/MM74C90 4-Bit Decade Counter MM54C93/MM74C93 4-Bit Binary Counter

General Description

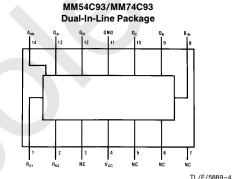
The MM54C90/MM74C90 decade counter and the MM54C93/MM74C93 binary counter and complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. The 4-bit decade counter can reset to zero or preset to nine by applying appropriate logic level on the R₀₁, R₀₂, R₉₁ and R₉₂ inputs. Also, a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, 5 or 10 frequency counter. The 4-bit binary counter can be reset to zero by applying high logic level on inputs R_{01} and R_{02} , and a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, -8, or -16 divider. Counting occurs on the negative going edge of the input pulse.

All inputs are protected against static discharge damage.

Features

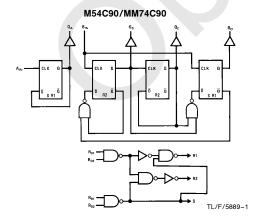

■ Wide supply voltage range 3V to 15V ■ Guaranteed noise margin 1V

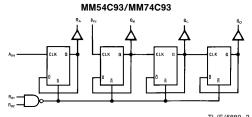
0.45 V_{CC} (typ.) ■ High noise immunity ■ Low power Fan out of 2 TTL compatiblity driving 74L


■ The MM54C93/MM74C93 follows the MM54L93/ MM74L93 Pinout

Connection and Logic Diagrams

MM54C90/MM74C90




TL/F/5889-2 **Top View**

Top View

Order Number MM54C90 or MM74C93

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin (Note 1)

Operating Temperature Range (T_A) MM54C90, MM54C93

MM74C90, MM74C93

 $-0.3 \mbox{V}$ to $\mbox{V}_{\mbox{CC}} + 0.3 \mbox{V}$

-55°C to +125°C -40°C to +85°C Power Dissipation (PD) Dual-In-Line

Small Outline Operating V_{CC} Range

700 mW 500 mW 3V to 15V

18V

Absolute Maximum V_{CC}

Storage Temperature Range (T_S) Lead Temperature (T_I)

 -65° C to $+150^{\circ}$ C

(Soldering, 10 seconds)

260°C

DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise noted

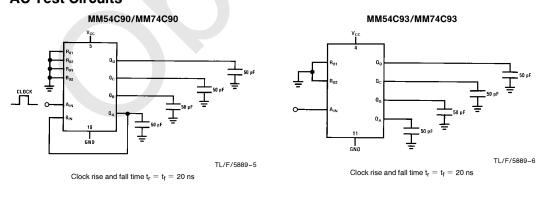
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO CM	IOS					
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5V V _{CC} = 10V	3.5 8.0			V V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			1.5 2.0	>>
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$ $V_{CC} = 10V, I_{O} = -10 \mu A$	4.5 9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = +10 \mu A$ $V_{CC} = 10V, I_{O} = +10 \mu A$			0.5 1.0	>>
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current	$V_{CC} = 15V$		0.05	300	μΑ
CMOS/LPTTI	L INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage MM54C90, MM54C93 MM74C90, MM74C93	V _{CC} = 4.5V V _{CC} = 4.75V	V _{CC} -1.5 V _{CC} -1.5			> >
V _{IN(0)}	Logical "0" Input Voltage MM54C90, MM54C93 MM74C90, MM74C93	V _{CC} = 4.5V V _{CC} = 4.75V			0.8 0.8	> >
V _{OUT(1)}	Logical "1" Output Voltage MM54C90, MM54C93 MM74C90, MM74C93	$V_{CC} = 4.5V$, $I_{O} = -360 \mu A$ $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4 2.4			V V
V _{OUT(0)}	Logical "0" Output Voltage MM54C90, MM54C93 MM74C90, MM74C93	$V_{CC} = 4.5V, I_{O} = -360 \mu A$ $V_{CC} = 4.75V, I_{O} = -360 \mu A$			0.4 0.4	> >
OUTPUT DRI	VE (See 54C/74C Family Charac	cteristics Data Sheet) (Short Circu	uit Current)			
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-1.75	-3.3		mA
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-8.0	-15		mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 5V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 10V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

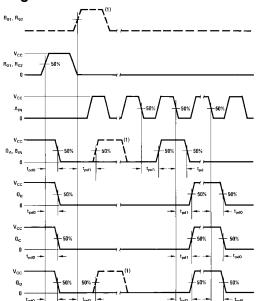
AC Electrical Characteristics* $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _A	$V_{CC} = 5V$ $V_{CC} = 10$		200 80	400 150	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _B (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		450 160	850 300	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _B (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$		450 160	800 300	ns ns

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _C (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10$		500 200	1050 400	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A_{IN} to Q_C (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		500 200	1000 400	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _D (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		600 250	1200 500	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from A _{IN} to Q _D (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$		450 160	800 300	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from R_{01} or R_{02} to Q_A , Q_B , Q_C or Q_D (MM54C93/MM74C93)	$V_{CC} = 5V$ $V_{CC} = 10V$		150 75	300 150	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from R_{01} or R_{02} to Q_A , Q_B , Q_C or Q_D (MM54C90/MM74C90)	V _{CC} = 5V V _{CC} = 10V		200 75	400 150	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time from R ₉₁ or R ₉₂ to Q _A or Q _D (MM54C90/MM74C90)	V _{CC} = 5V V _{CC} = 10V		250 100	500 200	ns ns
t _{PW}	Min. R ₀₁ or R ₀₂ Pulse Width (MM54C93/MM74C93)	V _{CC} = 5V V _{CC} = 10V	600 30	250 125		ns ns
t _{PW}	Min. R ₀₁ or R ₀₂ Pulse Width (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$	600 300	250 125		ns ns
t _{PW}	Min. R ₉₁ or R ₉₂ Pulse Width (MM54C90/MM74C90)	$V_{CC} = 5V$ $V_{CC} = 10V$	500 250	200 100		ns ns
t _r , t _f	Maximum Clock Rise and Fall Time	V _{CC} = 10V V _{CC} = 10V			15 5	μs μs
t _W	Minimum Clock Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	250 100	100 50		ns ns
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	2 5			MHz MHz
C _{IN}	Input Capacitance	Any Input (Note 2)		5		pF
C _{PD}	Power Dissipation Capacitance	Per Package (Note 3)		45		pF


^{*}AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note—AN-90.

AC Test Circuits

Switching Time Waveforms

Note 1: MM54C90, MM74C90 and MM54C93, MM74C93 are solid line waveforms. Dashed line waveforms are for MM54C90/MM74C90 only.

Truth Table

MM54C90/MM74C90 4-Bit Decade Counter

BCD Count Sequence

Count		Out	put	
Count	Q_D	Q_{C}	Q_{B}	Q_{A}
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н

Output Q_A is connected to Input B for BCD count.

H = High Level L = Low Level

Reset/Count Function Table

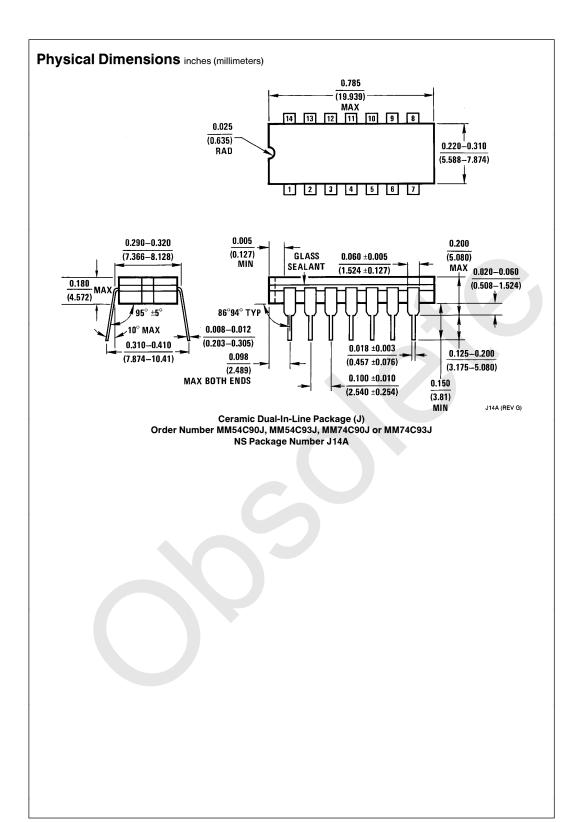
Tiboot, Count Tunotion Tubic								
Reset Inputs					Out	put		
R ₀₁	R ₀₂	R ₉₁	R ₉₂	Q_D	$\mathbf{Q}_{\mathbf{C}}$	Q_{B}	$\mathbf{Q}_{\mathbf{A}}$	
Н	Н	L	Χ	L	L	L	L	
Н	Н	Χ	L	L	L	L	L	
Х	Χ	Н	Н	Н	L	L	Н	
Х	L	Χ	L	Count				
L	X	L	X	Count				
L	Χ	Χ	L	Count				
Х	L	L	X	Count				

MM54C93/MM74C93 4-Bit Binary Counter

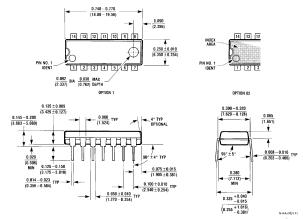
TL/F/5889-7

Binary Count Sequence

Count		Out	put	
	Q_D	Q_{C}	Q_{B}	Q_A
0	L	L	L	L
1	L	L L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	Н	Н
12	Н	Н	L	L
13	Н	Н	L	Н
14	Н	Н	Н	L
15	Н	Н	Н	Н


Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input B for binary count sequence.

H = High Level


L = Low Level X = Irrelevant

Reset/Count Function Table

	Reset Inputs			Out	tput		
	R ₀₁	R ₀₂	QD	Q_{C}	Q_{B}	Q_{A}	
	Н	Н	L	L	L	L	
ı	L	Χ	Count				
	X	L	Count				

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number MM54C90N, MM54C93N, MM74C90N or MM74C93N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>