ML63512A/63514A
4-Bit Microcontroller with Built-in Level Detector, Melody Circuit, and Comparator, Operating at 0.9 V (Min.)

GENERAL DESCRIPTION

The ML63512A/63514A is a CMOS 4-bit microcontroller with built-in level detector and operates at 0.9 V (min.).
The ML63512A/63514A is an M63512 series mask ROM-version product of OLMS-63K family, which employs Oki's original CPU core nX-4/250.
The program memory capacity and data memory capacity of the ML63512A differ from those of the ML63514A.
48-pin TQFP and 64-pin TQFP packages are available for the ML63512A and ML63514A.

FEATURES

- Extensive instruction set

407 instructions
Transfer, rotate, increment/decrement, arithmetic operations, comparison, logic operations, mask operations, bit operations, ROM table reference, stack operations, flag operations, jump, conditional branch, call/return, control.

- Wide variety of addressing modes

Indirect addressing of four data memory types, with current bank register, extra bank register, HL register and XY register.
Data memory bank internal direct addressing mode.

- Processing speed

Two clocks per machine cycle, with most instructions executed in one machine cycle.
Minimum instruction execution time : $61 \mu \mathrm{~s}$ (@ 32.768 kHz system clock)
$1 \mu \mathrm{~s}$ (@ 2 MHz system clock)

- Clock generation circuit

Low-speed clock
High-speed clock
: Crystal oscillation or RC oscillation selectable by mask option (30 to 80 kHz)
: Ceramic oscillation or RC oscillation selectable by mask option (2 MHz max.)

- Program memory space

ML63512A: 4K words
ML63514A: 8K words
Basic instruction length is 16 bits/ 1 word

- Data memory space

ML63512A: 128 nibbles
ML63514A: 256 nibbles

- Stack level

Call stack level : 16 levels
Register stack level : 16 levels

- I/O ports

Input ports: Selectable as input with pull-up resistor/high-impedance input
Output ports: N-channel open drain output (can directly drive LEDs)
Input-output ports: Selectable as input with pull-up resistor/high-impedance input Selectable as N-channel open drain output/CMOS output
Can be interfaced with external peripherals that use a different power supply than this device uses. (Power to the output port is supplied from $\mathrm{V}_{\mathrm{DDI}}$ (separate power suply))
Number of ports:
(For 48-pin packages)

Input port	$: 1$ port $\times 4$ bits
Output port	$: 1$ port $\times 4$ bits
Input-output port	$: 6$ ports $\times 4$ bits
(For 64-pin packages and chips)	$: 1$ port $\times 4$ bits
Input port	$: 1$ port $\times 4$ bits
Output port	$: 9$ ports $\times 4$ bits
Input-output port	

- Melody output function

Melody sound frequency : 529 to 2979 Hz (@ 32.768 kHz)
Tone length : 63 varieties
Tempo : 15 varieties
Melody data : Stored in the program memory
Number of output ports : 1 (dedicated pin)
Buzzer driver signal output : 4 kHz (@ 32.768 kHz)

- Level detector

Conversion time : Approx. $183 \mu \mathrm{~s}$ (@ 32.768 kHz)
Dedicated input pins : 2 pins (switched by software; for the secondary functions of the input ports)
Detection level : 12 levels

- Comparator

Offset voltage : $50 \mathrm{mV} \max .\left(\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}\right)$
Comparison time : Approx. $183 \mu \mathrm{~s}$ (@ 32.768 kHz)
Number of channels : 1 (for the secondary functions of the input ports)

- System reset function

System reset through RESETB pin (connected to the internal 32 kHz sampling circuit)
(RESETB pin can be pulled up by mask option)

- Power supply backup

Backup circuit (voltage multiplier) enables operation at 0.9 V minimum

- Timers and counter

8 -bit timer $\times 2$
Selectable as auto-reload mode/capture mode/clock frequency measurement mode
15 -bit time base counter $\times 1$
$1 \mathrm{~Hz}, 2 \mathrm{~Hz}, 4 \mathrm{~Hz}, 8 \mathrm{~Hz}, 16 \mathrm{~Hz}, 32 \mathrm{~Hz}, 64 \mathrm{~Hz}, 128 \mathrm{~Hz}, 256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 2 kHz signals can be read (@ 32.768 kHz)

- Serial port

Mode : Selectable as UART mode/synchronous mode
UART communication speed

Clock frequency in synchronous mode
Data length
: 2TBCCLK, TBCCLK,1/2TBCCLK, Timers 0 \& 1 overflow
24 kbps Max. (when 2TBCCLK @ 80 kHz selected)
: 30 to 80 kHz (internal clock mode), external clock frequency
: 5 to 8 bits

- Interrupt sources

External interrupt (4 sources)
Internal interrupt (10 sources)
: Selectable as rising edge/falling edge/both rising and falling edges
: Time base interrupt $\times 4(2,4,16$, and 32 Hz @ 32.768 kHz)
Timer interrupt $\times 2$
Level detector interrupt $\times 1$
Serial port reception interrupt $\times 1$
Serial port transmission interrupt $\times 1$
Melody end interrupt $\times 1$

- Operating temperature
-20 to $+70^{\circ} \mathrm{C}$
- Supply voltage

When backup used
When backup not used
: 0.9 to 1.8 V
(Maximum operating frequency 1 MHz) : 1.8 to 3.5 V
(Maximum operating frequency 2 MHz ; when Level detector or Comparator is used)
1.8 to 5.5 V
(Maximum operating frequency 2 MHz ; when Level detector and Comparator are not used)

- Package options:

Chip (60 pads) : (Product name: ML63512A-xxxWA, ML63514A-xxxWA)
48-pin plastic TQFP (TQFP48-P-0707-0.50-K) : (Product name: ML63512A-xxxTB, ML63514A-xxxTB)
64-pin plastic TQFP (TQFP64-P-1010-0.50-K) : (Product name: ML63512A-xxxTP, ML63514A-xxxTP)
xxx indicates a code number.

BLOCK DIAGRAM

An asterisk (*) indicates the port secondary function. The power to the circuits corresponding to the signal names inside

${ }^{\dagger}$ Port 6 (P6.0 to P6.3), Port 9 (P9.0 to P9.3) and Port A (PA. 0 to PA.3) are provided for the 64-pin packages and chips.

PIN CONFIGURATION (TOP VIEW)

48-Pin Plastic TQFP

PIN CONFIGURATION (TOP VIEW) (continued)

64-Pin Plastic TQFP

Note: Pins marked as (NC) are no-connection pins which are left open.

PAD CONFIGURATION

Pad Layout

Chip Size	$: 3.51 \mathrm{~mm} \times 3.77 \mathrm{~mm}$
Chip Thickness	$: 350 \mu \mathrm{~m}$ (typ.)
Coordinate Origin	$:$ Chip center
Pad Hole Size	$: 110 \mu \mathrm{~m} \times 110 \mu \mathrm{~m}$
Pad Size	$: 120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$
Minimum Pad Pitch	$: 150 \mu \mathrm{~m}$

Note: The chip substrate voltage is $V_{\text {SS }}$.

Pad Coordinates

Chip center: $X=0, Y=0$

Pad No.	Pad Name	X ($\mu \mathrm{m}$)	Y ($\mu \mathrm{m}$)	Pad No.	Pad Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
1	P9. 2	-1175	-1717	31	P6.0	1604	1018
2	P9.3	-1018	-1717	32	P6.1	1604	1175
3	P0.0	-862	-1717	33	P6.2	1175	1717
4	P0.1	-705	-1717	34	P6.3	1018	1717
5	P0. 2	-548	-1717	35	P7.0	862	1717
6	P0.3	-392	-1717	36	P7.1	705	1717
7	P1.0	-235	-1717	37	P7. 2	548	1717
8	P1.1	-78	-1717	38	P7.3	392	1717
9	P1.2	78	-1717	39	P8.0	235	1717
10	P1.3	235	-1717	40	P8.1	78	1717
11	P2.0	392	-1717	41	P8.2	-78	1717
12	P2.1	548	-1717	42	P8.3	-235	1717
13	P2.2	705	-1717	43	$V_{\text {DDI }}$	-392	1717
14	P2.3	862	-1717	44	$\mathrm{V}_{\text {S }}$	-934	1717
15	PA. 0	1018	-1717	45	$V_{D D}$	-1090	1717
16	PA. 1	1175	-1717	46	$V_{\text {DDH }}$	-1247	1717
17	PA. 2	1604	-1175	47	CB1	-1604	1127
18	PA. 3	1604	-1019	48	CB2	-1604	971
19	P3.0	1604	-862	49	$V_{\text {DDL }}$	-1604	814
20	P3.1	1604	-705	50	XT0	-1604	502
21	P3. 2	1604	-549	51	XT1	-1604	345
22	P3.3	1604	-392	52	TST1B	-1604	76
23	P4.0	1604	-235	53	TST2B	-1604	-81
24	P4.1	1604	-79	54	$\mathrm{V}_{\text {SS }}$	-1640	-236
25	P4.2	1604	78	55	OSCO	-1604	-392
26	P4.3	1604	235	56	OSC1	-1604	-548
27	P5.0	1604	391	57	RESETB	-1604	-705
28	P5.1	1604	548	58	MD	-1604	-862
29	P5.2	1604	705	59	P9. 0	-1604	-1018
30	P5.3	1604	861	60	P9. 1	-1604	-1175

PIN DESCRIPTIONS

The basic functions of each pin of the ML63512A/63514A are described in Table 1.
A symbol with a slash (/) denotes a pin that has a secondary function.
Refer to Table 2 for secondary functions.
For type,"-" denotes a power supply pin, "I" an input pin, "O" an output pin, and "I/O" an inputoutput pin.
For pin, "TB" denotes a 48-pin flat package (48TQFP), and "TP" a 64-pin flat package (64TQFP).
Table 1 Pin Descriptions (Basic Functions)

Function	Symbol	Pin No.		Pad No.	Type	Description
		TB	TP			
Power Supply	$V_{D D}$	23	29	45	-	Positive power supply
	$\mathrm{V}_{S S}$	22, 32	28, 42	44, 54	-	Negative power supply
	$V_{\text {DDI }}$	21	27	43	-	Positive power supply pin for external interface (PORT8 supply)
	VDDL	27	37	49	-	Positive power supply pin for internal logic (internally generated). A capacitor $\mathrm{C}_{\mathrm{I}}(0.1 \mu \mathrm{~F})$ should be connected between this pin and $\mathrm{V}_{\text {ss }}$.
	$V_{\text {DDH }}$	24	30	46	-	Voltage multiplier pin for power supply backup (internally generated). A capacitor $\mathrm{C}_{\mathrm{h}}(1.0 \mu \mathrm{~F})$ should be connected between this pin and V_{SS}.
	CB1	25	35	47	-	Pins to connect a capacitor for voltage multiplier.
	CB2	26	36	48	-	A capacitor ($1.0 \mu \mathrm{~F}$) should be connected between CB1 and CB2.
Oscillation	XT0	28	38	50	1	Low-speed clock oscillation pins. Crystal oscillation or RC oscillation is selected by the mask option.
	XT1	29	39	51	0	and XT 1 , and connect capacitor $\left(\mathrm{C}_{\mathrm{G}}\right)$ between XT0 and V_{SS}. If RC oscillation is selected, connect external oscillation resistor ($\mathrm{R}_{\mathrm{CRL}}$) between XTO and XT1.
	OSCO	33	43	55	1	High-speed clock oscillation pins. Ceramic oscillation or RC oscillation is selected by the mask option. If ceramic oscillation is selected, connect a ceramic resonato
	OSC1	34	44	56	0	between OSCO and OSC1, and connect capacitor ($\mathrm{C}_{\mathrm{L} 0}, \mathrm{C}_{\mathrm{L} 1}$) between OSCO and V_{SS}, OSC1 and V_{SS}. If RC oscillation is selected, connect external oscillation resistor ($\mathrm{R}_{\mathrm{CRH}}$) between OSCO and OSC1.
Test	TST1B	30	40	52	1	Input pins for testing.
	TST2B	31	41	53	I	

Table 1 Pin Descriptions (Basic Functions) (continued)

Function	Symbol	Pin No.		Pad No.	Type	Description
		TB	TP			
Reset	RESETB	35	45	57	1	Reset input pin. Setting this pin to "L" level puts this device into a reset stat Then, setting this pin to " H " level starts executing an instruction from address 0000 H . An internal or external pull-up resistor is selected by mask option.
Melody	MD	36	46	58	0	Melody output pin (non-inverted output)
Port	P0.0/INTO	37	51	3	I/0	4-bit input-output ports. In input mode, pull-up resistor input or high-impedance input is selectable for each bit. In output mode, N -channel open drain output or CMOS output is selectable for each bit.
	P0.1/INT1	38	52	4		
	P0.2/INT2	39	53	5		
	P0.3/INT3	40	54	6		
	$\begin{gathered} \hline \text { P1.0/ } \\ \text { TMOCAP/ } \\ \text { TM00VF } \end{gathered}$	41	55	7	I/0	
	$\begin{gathered} \text { P1.1/ } \\ \text { TM1CAP/ } \\ \text { TM10VF } \\ \hline \end{gathered}$	42	56	8		
	P1.2TOCK	43	57	9		
	P1.3/T1CK	44	58	10		
	P2.0/TBCCLK	45	59	11	1/0	
	P2.1/HSCLK	46	60	12		
	P2.2	47	61	13		
	P2.3	48	62	14		
	P3.0/RXD	1	3	19	1/0	
	P3.1/TXC	2	4	20		
	P3.2/RXC	3	5	21		
	P3.3/TXD	4	6	22		
	P4.0	5	7	23	1/0	
	P4.1	6	8	24		
	P4.2	7	9	25		
	P4.3	8	10	26		
	P5.0	9	11	27	1/0	
	P5.1	10	12	28		
	P5.2	11	13	29		
	P5.3	12	14	30		

Table 1 Pin Descriptions (Basic Functions) (continued)

Function	Symbol	Pin No.		Pad No.	Type	Description
		TB	TP			
Port	P6.0	-	15	31	I/0	4-bit input-output port. In input mode, pull-up resistor input or high-impedance input is selectable for each bit. In output mode, N-channel open drain output or CMOS output is selectable for each bit. Note that these pins are available for a 64 -pin package and chip.
	P6. 1	-	16	32		
	P6.2	-	17	33		
	P6.3	-	18	34		
	P7.0/CMPIN	13	19	35	1	4-bit input port. Pull-up resistor input or high-impedance input is selectable for each bit.
	P7.1/CMPREF	14	20	36		
	P7.2/LDIN0	15	21	37		
	P7.3/LDIN1	16	22	38		
	P8.0	17	23	39	0	4-bit output port. N -channel open drain output.
	P8.1	18	24	40		
	P8.2	19	25	41		
	P8.3	20	26	42		
	P9.0	-	47	59	I/0	4-bit input-output ports. In input mode, pull-up resistor input or high-impedance input is selectable for each bit. In output mode, N-channel open drain output or CMOS output is selectable for each bit. Note that these pins are available for a 64-pin package and chip.
	P9. 1	-	48	60		
	P9. 2	-	49	1		
	P9.3	-	50	2		
	PA. 0	-	63	15	1/0	
	PA. 1	-	64	16		
	PA. 2	-	1	17		
	PA. 3	-	2	18		

Table 2 shows the secondary functions of each pin of the ML63512A/63514A.
Table 2 Pin Descriptions (Secondary Functions)

| Function | Symbol | Pin No. | Pad | Type | |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| | | TB | TP | No. | Description |

ABSOLUTE MAXIMUM RATINGS

Parameter				
Symbol	Condition	Rating	Unit	
Power Supply Voltage 1	$\mathrm{~V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +5.8	V
Power Supply Voltage 2	$\mathrm{V}_{\mathrm{DDI}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +5.8	V
Power Supply Voltage 3	$\mathrm{V}_{\mathrm{DDH}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +5.8	V
Power Supply Voltage 4	$\mathrm{V}_{\mathrm{DDL}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +5.8	V
Input Voltage 1	$\mathrm{V}_{I N 1}$	$\mathrm{~V}_{\mathrm{DD}} \mathrm{Input}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input Voltage 2	$\mathrm{V}_{I N 2}$	$\mathrm{~V}_{\mathrm{DDI}} \mathrm{Input}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DDI}}+0.3$	V
Output Voltage 1	$\mathrm{V}_{\text {OUT1 }}$	V_{DD} Output, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Voltage 2	$\mathrm{V}_{\text {OUT2 }}$	$\mathrm{V}_{\mathrm{DDI}}$ Output, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DDI}}+0.3$	V
Output Voltage 3	$\mathrm{V}_{\text {OUT3 }}$	$\mathrm{V}_{\mathrm{DDH}}$ Output, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DDH}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	15	mW

RECOMMENDED OPERATING CONDITIONS

- When backup is used

	$\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$			
Parameter	Symbol	Condition	Range	Unit
Operating Temperature	T_{Op}	-	-20 to +70	${ }^{\circ} \mathrm{C}$
Operating Voltage	V_{DD}	-	0.9 to 1.8	V
	$\mathrm{~V}_{\mathrm{DDI}}$	-	0.9 to 3.5	V
Crystal Oscillation Frequency	f_{XT}	-	30 to 80	kHz
Low-Speed RC Oscillator Frequency	$\mathrm{f}_{\mathrm{CRL}}$	$\mathrm{R}_{\mathrm{CRL}}=1.5 \mathrm{M} \Omega$	$32 \pm 30 \%$	kHz
External High-Speed RC Oscillator Resistance	$\mathrm{R}_{\mathrm{CRH}}$	$\mathrm{V}_{\mathrm{DD}}=0.9$ to 1.8 V	100 to 300	$\mathrm{k} \Omega$

- When backup is not used

$\left(\mathrm{V}_{S S}=0 \mathrm{~V}\right)$				
Parameter	Symbol	Condition	Range	Unit
Operating Temperature	$\mathrm{T}_{\text {op }}$	-	-20 to +70	${ }^{\circ} \mathrm{C}$
Operating Voltage	$V_{D D}$	-	1.8 to 3.5	V
		When Level detector and Comparator are not used	1.8 to 5.5	
	$V_{\text {DDI }}$	-	1.8 to 5.5	
Crystal Oscillation Frequency	$\mathrm{fxt}^{\text {I }}$	-	30 to 80	kHz
Low-Speed RC Oscillator Frequency	$\mathrm{f}_{\mathrm{CRL}}$	$\mathrm{R}_{\mathrm{CRL}}=1.5 \mathrm{M} \Omega$	$32 \pm 30 \%$	kHz
External High-Speed RC Oscillator Resistance	$\mathrm{R}_{\text {cre }}$	$V_{D D}=1.8$ to 5.5 V	15 to 300	k Ω
Ceramic Oscillation Frequency	f_{CM}	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V	300k to 1M	Hz
		$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	200k to 2M	

ELECTRICAL CHARACTERISTICS

DC Characteristics

- When backup is used
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDI}}=1.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified $)$

Parameter	Symbol	Condition		Min.	Typ.	Max.	Unit	Measuring Circuit
Supply Current 1	IDD1	CPU is in HALT state High-speed oscillation stop Level detector stop	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	4.8	5.3	5.8	$\mu \mathrm{A}$	
			$\mathrm{Ta}=-20 \mathrm{to}+50^{\circ} \mathrm{C}$	-	5.3	9.0		
			$\mathrm{Ta}=-20 \mathrm{to}+70^{\circ} \mathrm{C}$	-	5.3	15.0		
Supply Current 2	IdD2	CPU operating High-speed oscillation stop Level detector stop	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	12	13	14	$\mu \mathrm{A}$	
			$\mathrm{Ta}=-20$ to $+50^{\circ} \mathrm{C}$	-	13	16		
			$\mathrm{Ta}=-20 \mathrm{to}+70^{\circ} \mathrm{C}$	-	13	24		
Supply Current 3	IdD3	CPU operating at low speed High-speed oscillation stop Level detector active (for a soft duty of about 3\%)		-	10	35	$\mu \mathrm{A}$	1
Supply Current 4	$I_{\text {DD } 4}$	CPU operating at his High-speed RC o $\mathrm{R}_{\text {CRH }}=100$	high speed scillation $\mathrm{k} \Omega$	-	550	750	$\mu \mathrm{A}$	

- When backup is not used
$\left(V_{D D}=V_{D D I}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified $)$

DC Characteristics (continued)

$\left(V_{D D}=V_{D D I}=1.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified $)$

Parameter (Pin Name)	Symbol	Condition	Min.	Typ.	Max.	Unit	Measuring Circuit
V ${ }_{\text {do }}$ Voltage	$V_{\text {DDH }}$	High-speed clock stop $V_{D D}=1.5 \mathrm{~V}$	2.8	-	3.0	V	-
		High-speed clock oscillation (RC oscillation, $\mathrm{R}_{\text {CRH }}=100 \mathrm{k} \Omega$)	2	-	-	V	
V DDL Voltage	$V_{\text {DDL }}$	High-speed clock stop	1.0	1.5	2.0	V	
		High-speed clock oscillation	2.0	-	2.7	V	
Crystal Oscillation Start Voltage	$V_{\text {STA }}$	Oscillation start time: within 5 seconds	1.2	-	-	V	
Crystal Oscillation Hold Voltage	Vhold	-	0.9	-	-	V	
External Crystal Oscillator Capacitance	C_{G}	-	5	-	25	pF	
Internal Crystal Oscillator Capacitance	C_{D}	-	20	25	30	pF	
Internal Low-Speed RC Oscillator Capacitance	Cxt	-	10	15	20	pF	
Internal High-Speed RC Oscillator Capacitance	Cos	-	8	12	16	pF	
Input Pin Capacitance (PO.O to P0.3) (P1.0 to P1.3)	$\mathrm{Cin}_{\text {I }}$	-	-	-	5	pF	
(P7.0 to P7.3) (P9.0 to P9.3) (PA. 0 to PA.3)							

DC Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDI}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

DC Characteristics (continued)

$\left(V_{D D}=V_{D D I}=1.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified $)$

Parameter (Pin Name)	Symbol	Condition		Min.	Typ.	Max.	Unit	Measuring Circuit
Input Current 1 (PO. 0 to P0.3) (P1.0 to P1.3)	IH1U	$\mathrm{V}_{1 H 1}=\mathrm{V}_{\mathrm{DD}}$ (when pulled up)		-	-	1	$\mu \mathrm{A}$	3
	IlL1U	$V_{I L 1}=V_{S S}$ (when pulled up)	$V_{D D}=1.5 \mathrm{~V}$	-8	-4	-1	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-60	-30	-10	$\mu \mathrm{A}$	
(P7.0 to P7.3) (P9.0 to P9.3) (PA. 0 to PA.3)			$V_{D D}=5.0 \mathrm{~V}$	-150	-90	-23	$\mu \mathrm{A}$	
	l_{1+12}	$\mathrm{V}_{\mathrm{IH} 1}=\mathrm{V}_{\mathrm{DD}}$ (in a high-impedance state)		-	-	1	$\mu \mathrm{A}$	
	l\|L12	$\mathrm{V}_{\mathrm{IL} 1}=\mathrm{V}_{\text {SS }}$ (in a high-impedance state)		-1	-	-	$\mu \mathrm{A}$	
Input Current 2 (RESETB)	IIH2	$\mathrm{V}_{\mathrm{H} 2}=\mathrm{V}_{\text {DD }}$		-	-	1	$\mu \mathrm{A}$	
	IIL2	$\mathrm{V}_{\mathrm{IL} 2}=\mathrm{V}_{\mathrm{SS}}$ (when pulled up)	$V_{D D}=1.5 \mathrm{~V}$	-45	-20	-2	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-260	-120	-30	$\mu \mathrm{A}$	
			$V_{D D}=5.0 \mathrm{~V}$	-870	-300	-70	$\mu \mathrm{A}$	
Input Current 3 (OSCO)	IIL3	$V_{I L 3}=V_{S S}$ (when pulled up)	$V_{\text {DD }}=V_{\text {DDH }}=3.0 \mathrm{~V}$	-350	-170	-30	$\mu \mathrm{A}$	
			$V_{D D}=V_{\text {DDH }}=5.0 \mathrm{~V}$	-750	-450	-200	$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{H} 3 \mathrm{R}}$	$\mathrm{V}_{\mathrm{HH} 3}=\mathrm{V}_{\mathrm{DDH}}$		-	-	1	$\mu \mathrm{A}$	
	ILL3R	$\mathrm{V}_{\text {IL3 }}=\mathrm{V}_{\text {SS }}$		-1	-	-	$\mu \mathrm{A}$	
Input Current 4 (TST1B, TST2B)	ІІн4	$\mathrm{V}_{1 H 4}=\mathrm{V}_{\text {D }}$		-	-	0.1	$\mu \mathrm{A}$	
	Il4	$V_{\mathrm{IL4}}=\mathrm{V}_{\mathrm{SS}}$ (when pulled up)	$V_{D D}=1.5 \mathrm{~V}$	-120	-60	-10	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-600	-350	-100	$\mu \mathrm{A}$	
			$V_{D D}=5.0 \mathrm{~V}$	-1320	-770	-220	$\mu \mathrm{A}$	

DC Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDI}}=1.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified $)$

Parameter (Pin Name)	Symbol	Condition	Min.	Typ.	Max.	Unit	Measuring Circuit
Input Voltage 1 (P0.0 to P0.3) (P1.0 to P1.3) (P7.0 to P7.3) (P9.0 to P9.3) (PA. 0 to PA.3)	$\mathrm{V}_{\text {H1 }}$	$V_{D D}=1.5 \mathrm{~V}$	1.2	-	1.5	V	4
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	2.4	-	3.0	V	
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	4	-	5	V	
	$\mathrm{V}_{\text {IL1 }}$	$V_{D D}=1.5 \mathrm{~V}$	0	-	0.3	V	
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0	-	0.6	V	
		$V_{D D}=5.0 \mathrm{~V}$	0	-	1	V	
Input Voltage 2 (OSCO)	V_{1+2}	$V_{D D}=V_{\text {DDH }}=3.0 \mathrm{~V}$	2.4	-	3.0	V	
		$V_{D D}=V_{\text {DDH }}=5.0 \mathrm{~V}$	4	-	5	V	
	$\mathrm{V}_{\text {IL2 }}$	$V_{D D}=V_{\text {DDH }}=3.0 \mathrm{~V}$	0	-	0.6	V	
		$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {DDH }}=5.0 \mathrm{~V}$	0	-	1	V	
Input Voltage 3 (RESETB) (TST1B, TST2B)	$\mathrm{V}_{\text {IH3 }}$	$V_{D D}=1.5 \mathrm{~V}$	1.35	-	1.50	V	
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	2.4	-	3.0	V	
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	4	-	5	V	
	VIL3	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$	0	-	0.15	V	
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0	-	0.6	V	
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0	-	1	V	
Hysteresis Width (PO.O to P0.3) (P1.0 to P1.3)	$\triangle \mathrm{V}_{\mathrm{T}}$	$V_{D D}=1.5 \mathrm{~V}$	0.05	0.10	0.30	V	
(P7.0 to P7.3) (P9.0 to P9.3)		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0.2	0.5	1.0	V	
(PA. 0 to PA.3) (RESETB) (TST1B, TST2B)		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0.25	1.00	1.50	V	

Hysteresis width

Measuring circuit 1

*1
RC oscillator

*2
RC oscillator

Ceramic oscillator

Measuring circuit 2

*3 Input logic circuit to determine the specified measuring conditions.
*4 Measured at the specified output pins.

Measuring circuit 3

Measuring circuit 4

*5 Measured at the specified input pins.

AC Characteristics (Serial Interface, Serial Port)

$\left(\mathrm{V}_{\mathrm{DD}}=0.9\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDH}}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=0.9$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)
(1) Synchronous Communication

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
TXC/RXC Input Fall Time	t_{f}	-	-	-	1	$\mu \mathrm{s}$
TXC/RXC Input Rise Time	t_{r}	-	-	-	1	$\mu \mathrm{s}$
TXC/RXC Input "L" Level Pulse Width	tcwL	-	0.8	-	-	$\mu \mathrm{S}$
TXC/RXC Input "H" Level Pulse Width	tcw	-	0.8	-	-	$\mu \mathrm{S}$
TXC/RXC Input Cycle Time	toyc	-	2	-	-	$\mu \mathrm{s}$
TXC/RXC Output Cycle Time	$\mathrm{t}_{\mathrm{CYC}}(0)$	CPU operating at 32.768 kHz	-	30.5	-	$\mu \mathrm{s}$
TXD Output Delay Time	$\mathrm{t}_{\text {DDR }}$	Output load capacitance 10 pF	-	-	0.4	$\mu \mathrm{s}$
RXD Input Setup Time	$t_{\text {DS }}$	-	0.5	-	-	$\mu \mathrm{s}$
RXD Input Hold Time	$t_{\text {DH }}$	-	0.8	-	-	$\mu \mathrm{s}$

Synchronous communication timing
("H" level = 4.0 V , "L" level = 1.0 V)

(2) UART Communication

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Transmit Baud Rate	$\mathrm{T}_{\text {BRT }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{BRT}}=1 / \mathrm{f}_{\mathrm{BRT}} \\ & \mathrm{~T}_{\mathrm{CR}}=1 / \mathrm{f} \end{aligned}$	$\mathrm{T}_{\text {BRT }}-\mathrm{T}_{\text {CR }}$	TBRT	$\mathrm{T}_{\text {BRT }}+\mathrm{T}_{\text {CR }}$	s
Receive Baud Rate	$\mathrm{R}_{\text {BRT }}$	$\mathrm{R}_{\text {BRT }}=1 / \mathrm{f}_{\text {BRT }}$	$\mathrm{R}_{\text {BRT }} \times 0.97$	RBRT	$\mathrm{R}_{\text {BRT }} \times 1.03$	s

UART communication timing
("H" level = 4.0 V , "L" level = 1.0 V)

AC Characteristics

	$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDI}}=0.9\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{VS}=0 \mathrm{~V}, \mathrm{Ta}=-20 \mathrm{to}+70^{\circ} \mathrm{C}$ unless otherwise specified $)$						
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	
External Interrupt Enable Pulse Width (Rising Edge)	t_{WH}	-	20	-	-	ns	
External Interrupt Enable Pulse Width (Falling Edge)	twL	-	20	-	-	ns	
External Interrupt Disable Time	$\mathrm{t}_{\text {NUL }}$	Interrupt enable, MIE $=1$ CPU operating under the NOP instruction	13.0	-	65.1	$\mu \mathrm{~s}$	

AC characteristics timing

Comparator Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=0.9 \mathrm{~V}, \mathrm{~V}\right.$ SS $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remarks
Comparator Offset Voltage	$V_{\text {coff }}$	-	-	-	30	mV	CMPIN CMPREF
Comparator Input Voltage	$V_{\text {cin }}$	-	Vss	-	VDD	V	
Comparator Conversion Time	Tc	System clock: 32.768 kHz	-	183	-	$\mu \mathrm{s}$	
Comparator Supply	Iddcmp	Comparator operating	-	30	90	$\mu \mathrm{A}$	
Current	IDSCMP	Comparator stopped	-	-	0.1	$\mu \mathrm{A}$	

Conceptual diagram of comparator supply current
The conceptual diagram of the comparator supply current $\mathrm{I}_{\text {DDCMP }}$ and $\mathrm{I}_{\text {DSCMP }}$ is shown below.

Level Detector Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remarks
Level Detector Input Voltage	V_{LD}	-	$\mathrm{V}_{S S}$	-	V_{DD}	V	
Level Detector Conversion Time	T_{C}	System clock: 32.768 kHz	-	183	-	$\mu \mathrm{S}$	LDINO, 1
Level Dtector Supply Current	$I_{\text {DDLD }}$	Level detector operating	-	80	130	$\mu \mathrm{~A}$	
	IDSLD	Level detector stopped	-	-	0.1	$\mu \mathrm{~A}$	

Conceptual diagram of level detector supply current
The conceptual diagram of the level detector supply current $\mathrm{I}_{\text {DDLD }}$ and $\mathrm{I}_{\text {DSLD }}$ is shown below.

Level Detector Input Levels and Output Codes

$\left(\mathrm{V}_{\mathrm{DD}}=0.9\right.$ to 1.8 V : when backup is used, $\mathrm{V}_{\mathrm{DD}}=1.8$ to 3.5 V : when backup is not used;
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}$)

Input Level [V]		Level Detector Operation State	LDOUT			
Min.	Max.		bit 3	bit 2	bit 1	bit 0
1440/1500 $\times V_{\text {DD }}$	$V_{D D}$	OFF state	1	1	1	1
$1306 / 1500 \times V_{\text {DD }}$	1366/1500 $\times V_{D D}$	ON state	1	0	1	1
$1190 / 1500 \times V_{D D}$	$1250 / 1500 \times V_{D D}$		1	0	1	0
$1074 / 1500 \times V_{D D}$	$1134 / 1500 \times V_{D D}$		1	0	0	1
$958 / 1500 \times V_{D D}$	$1018 / 1500 \times V_{D D}$		1	0	0	0
$842 / 1500 \times V_{D D}$	$902 / 1500 \times V_{D D}$		0	1	1	1
$726 / 1500 \times V_{D D}$	$786 / 1500 \times V_{D D}$		0	1	1	0
$610 / 1500 \times V_{D D}$	$670 / 1500 \times V_{D D}$		0	1	0	1
$494 / 1500 \times V_{\text {DD }}$	$554 / 1500 \times V_{D D}$		0	1	0	0
$378 / 1500 \times V_{\text {DD }}$	$438 / 1500 \times \mathrm{V}_{\mathrm{DD}}$		0	0	1	1
$262 / 1500 \times V_{D D}$	$322 / 1500 \times V_{D D}$		0	0	1	0
$146 / 1500 \times V_{D D}$	$206 / 1500 \times V_{D D}$		0	0	0	1
$\mathrm{V}_{\text {S }}$	$88 / 1500 \times V_{D D}$		0	0	0	0

PACKAGE DIMENSIONS
(Unit : mm)
TQFP48-P-0707-0.50-K

	$\underbrace{y^{0 \sim 10^{\circ}}}_{\frac{0.5 \pm 0.2}{0.6 T Y P .}}$
Package material	Epoxy resin
Lead frame material	42 alloy
Pin treatment	Solder plating
Solder plate thickness	$5 \mu \mathrm{~m}$ or more
Package weight (g)	0.13 TYP.

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.
9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 2000 Oki Electric Industry Co., Ltd.

