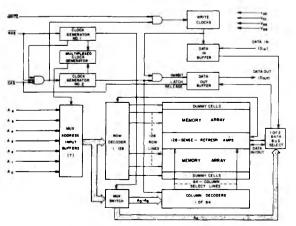
SUPPLEMENT

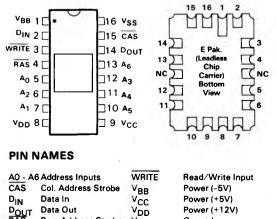
OSTEK 16.384 x 1-BIT DYNAMIC RAM Processed to MIL-STD-883, Method 5004, Class B MKB4116(P/J)-82/83/84 MKB4116(E/F)-83/84


FEATURES

- \Box Extended operating temperature range (-55°C \leq T_C $\leq +110^{\circ}C$)
- □ Recognized industry standard 16-pin configuration from Mostek
- □ 150ns access time, 320ns cycle (MKB4116-82) 200ns access time, 375ns cycle (MKB4116-83) 250ns access time, 410ns cycle (MKB4116-84)
- $\Box \pm 10\%$ tolerance on all power supplies (+12V, \pm 5V)
- □ Low power: 462mW active, 30mW standby (max)
- Output data controlled by CAS and unlatched at end of cycle to allow two dimensional chip selection and extended page boundary

DESCRIPTION

The MKB4116 is a new generation MOS dynamic random access memory circuit organized as 16,384 words by 1 bit. As a state-of-the-art MOS memory device, the MKB4116 (16K RAM) incorporates advanced circuit techniques designed to provide wide operating margins, both internally and to the system user, while achieving performance levels in speed and power previously seen only in Mostek's high performance MK4027 (4K RAM).


BLOCK DIAGRAM

- □ Common I/O capability using "early write" operation
- □ Read-Modify-Write, RAS-only refresh, and Pagemode capability
- □ All inputs TTL compatible, low capacitance, and protected against static charge
- 128 refresh cycles (2msec refresh interval)
- Leadless chip carrier (E) and flat pack (F) available for high density applications, -83/84
- Ruggedized for use in severe military environments

The technology used to fabricate the MKB4116 is Mostek's double-poly, N-channel silicon gate, POLY I™ process. This process, coupled with the use of a single transistor dynamic storage cell, provides the maximal circuit density and reliability, while maintaining high performance capability. The use of dynamic circuitry throughout, including sense amplifiers, assures that power dissipation is minimized without any sacrifice in speed or operating margin. These factors combine to make the MKB4116 a truly superior RAM product.

PIN CONNECTIONS

Vss

Ground

DOUT RAS

Row Address Strobe

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V _{BB}	0.5V to +20V
Voltage on V _{DD} , V _{CC} supplies relative to V _{SS}	1.0V to +15.0V
$V_{BB} - V_{SS} (V_{DD} - V_{SS} > 0V)$	OV
Operating Temperature, T _C (Case)	55°C to +110°C
Storage Temperature (Ambient)	65°C to +150°C
Short Circuit Output Current	
Power Dissipation	
*Ctronspondents them there lighted under "Alter Marine Detine"	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS⁶

 $(-55^{\circ}C \le T_C \le +110^{\circ}C)$

SYM	PARAMETER	MIN	ΤΥΡ	MAX	UNITS	NOTES
V _{DD}	Supply Voltage	10.8	12.0	13.2	Volts	2
V _{CC}	Supply Voltage	4.5	5.0	5.5	Volts	2,3
V _{SS}	Supply Voltage	0	0	0	Volts	2
V _{BB}	Supply Voltage	-4.5	-5.0	-5.5	Volts	2
VIHC	Input High (Logic 1) Voltage, RAS, CAS, WRITE	2.7	_	7.0	Volts	2
VIH	Input High (Logic 1) Voltage, all inputs except RAS, CAS, WRITE	2.4	<u></u>	7.0	Volts	2
VIL	Input Low (Logic 0) Voltage, all inputs	-1.0	_	.8	Volts	2

DC ELECTRICAL CHARACTERISITCS

(-55°C \leq T_C \leq +110°C) (V_{DD} = 5.0V \pm 10%; -5.5V \leq V_{BB} \leq -4.5V; V_{SS} = 0V)

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
DD1 CC1	OPERATING CURRENT Average power supply operating current		35	mA	4 5
IBB1	(RAS, CAS cycling; $t_{RC} = t_{RC}$ (min)		400	μΑ	
IDD2	STANDBY CURRENT		2.25	mA	
ICC2	Power supply standby current ($\overline{RAS} = V_{IHC}$,	-10	10	μΑ	
IBB2	D _{OUT} = High Impedance)		200	μA	
IDD3	REFRESH CURRENT		27	mA	4
ICC3	Average power supply current, refesh mode	-10	10	μA	
IBB3	(RAS cycling, $\overline{CAS} = V_{IHC}$; $t_{RC} = t_{RC}$ min)		400	μΑ	
IDD4	PAGE MODE CURRENT		27	mA	4
ICC4	Average power supply current, page-mode				5
I _{BB4}	operation (RAS = V _{IL} , CAS cycling;				
	t _{PC} = t _{PC} min)		400	μΑ	
(L)	INPUT LEAKAGE	-10	10	μA	
	Input leakage, any input (V _{BB} = -5V, $0V \le V_{IN}$				
	\leq +7.0V, all other pins not under test = 0 volts)				
I _{O(L)}	OUTPUT LEAKAGE	-10	10	μA	
0(L)	Output leakage current (DOUT is disabled,				
	$0V \le V_{OUT} \le +5.5V$,
	OUTPUT LEVELS				
V _{OH}	Output high (Logic 1) voltage (I _{OUT} = -5mA)	2.4		Volts	3
VOL	Output low (Logic 0) voltage (IOUT = 4.2mA)		0.4	Volts	1

NOTES

- T_C is specified here for operation at frequencies to t_{RC} ≥ t_{RC} (min). Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met.
- 2. All voltages referenced to VSS.
- Output voltage will swing from V_{SS} to V_{CC} when activated with no current loading. For purposes of maintaing data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH} (min) specifications is not guaranteed in this mode.
- I_{DD1}, I_{DD3}, and I_{DD4} depend on cycle rate. See Figures 2, 3 and 4 for I_{DD} limits at other cycle rates.
- 5. I_{CC1} and I_{CC4} depend upon output loading. During readout of high level data V_{CC} is connected through a low impedance (135 Ω typ) to data out. At all other times I_{CC} consists of leakage currents only.
- Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
- 7. AC measurements assume t1 5ns.
- V_{IHC}(min) or V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} or V_{IL}.
- 9. The specifications for t_{RC} (min) t_{RMW} (min) are used only to indicate cycle which proper operation over the full temperature range (-55°C \leq T_C \leq 110°C) is assured.
- 10. Assumes that $t_{RCD} \le t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RCD} will increase by the amount that t_{RCD} exceeds the value shown.
- 11. Assumes that $t_{RCD} \ge t_{RCD}$ (max)
- 12. Measured with a load equivalent to 2 TTL loads and 100pF.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (6,7,8)

 $(-55^{\circ}C \le T_C \le 110^{\circ}C)$ $(V_{DD} = 12.0V \pm 10\%; V_{CC} = 5.0V \pm 10\%, V_{SS} = 0V, -5.5V \le V_{BB} \le -4.5V)$

		MKB4116-82 MKB4116-83		МКВ4	116-84				
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
^t RC	Random read or write cycle time	320		375		410		ns	9
^t RWC	Read-write cycle time	320		375		425		ns	9
^t RMW	Read-modify-write cycle time	320		405		500		ns	9
^t PC	Page mode cycle time	170		225		275		ns	9
^t RAC	Access time from RAS		150		200		250	ns	10,12
^t CAC	Access time from CAS		100		135		165	ns	11,12
tOFF	Output buffer turn-off delay	0	40	0	50	0	60	ns	13
t _T	Transition time (rise and fall)	3	35	3	50	3	50	ns	8
tRP	RAS precharge time	100		120		150		ns	
^t RAS	RAS pulse width	150	5000	200	5000	250	5000	ns	
tRSH	RAS hold time	100		135		165		ns	
^t CSH	CAS hold time	150		200		250		ns	
tCAS	CAS pulse width	100	5000	135	5000	165	5000	ns	
tRCD	RAS to CAS delay time	20	50	25	65	35	85	ns	15
tCRP	CAS to RAS precharge time	0		0		0		ns	
^t ASR	Row Address set-up time	0		0		0		ns	
^t RAH	Row Address hold time	20		25		35		ns	
tASC	Column Address set-up time	0		0		0		ns	
^t CAH	Column Address hold time	45		55		75		ns	
^t AR	Column Address hold time referenced to RAS	95		120		160		ns	
^t RCS	Read command set-up time	0		0		0		ns	
^t RCH	Read command hold time	0		0		0		ns	
twch	Write command hold time	45		55		75		ns	
tWCR	Write command hold time referenced to RAS	95		120		160		ns	
tWP	Write command pulse width	45		55		75		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (6,7,8)

 $(-55^{\circ}C \le T_C \le +110^{\circ}C)^{1} \text{ (V}_{DD} = 12.0 \text{V} \pm 10\%; \text{ V}_{CC} = 5.0 \text{V} \pm 10\%, \text{ V}_{SS} = 0 \text{V}, -5.5 \text{V} \le \text{V}_{BB} \le -4.5 \text{V})$

		MKB4116-82		MKB4116-83		MKB4116-84			
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
tRWL	Write command to RAS lead time	50		70		85		ns	
^t CWL	Write command to CAS lead time	50		70		85		ns	
tDS	Data-in set-up time	0		0		0		ns	15
^t DH	Date-in hold time	45		55		75		ns	15
^t DHR	Data-in hold time referenced to RAS	95		120		160		ns	
^t CP	CAS precharge time (for page- mode cycle only)	60		80		100		ns	
^t REF	Refresh period		2		2		2	ms	19
twcs	WRITE command set-up time	0		0		0		ns	16
tCWD	CAS to WRITE delay	60		80		90		ns	16
tRWD	RAS to WRITE delay	110		145		175		ns	16

AC ELECTRICAL CHARACTERISTICS

 $(-55^{\circ}C \le T_{C} \le +110^{\circ}C) (V_{DD} = 12.0V \pm 10\%; V_{SS} = 0V; -5.5V \le V_{BB} \le -4.5V)$

SYM	PARAMETER	ТҮР	MAX	UNITS	NOTES
C _{I1}	Input Capacitance (A _O - A ₆), D _{IN}	4	5	pF	17
CI2	Input Capacitance, RAS, CAS, WRITE	8	10	pF	17
CO	Output Capacitance (D _{OUT})	5	7	pF	17,18

NOTES: Continued

13. t_{OPI} (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

14. Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met t_{RCD} (max) is specified as a reference point only, if t_{RCP} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .

15. These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.

DESCRIPTION (Continued)

Multiplexed address inputs (a feature pioneered by Mostek for its 4K RAMs) permits the MKB4116 to be packaged in a standard 16-pin DIP. This recognized industry standard package configuration, while compatible with widely available automated testing and 16. t_{WCS}, t_{CWD}, and t_{RWD} are restrictive operating parameters in read-write and read-modify-write cycles only. If t_{WCS} \leq W_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If t_{CWD} \leq t_{CWD} (min) and t_{RWD} \leq t_{RWD} (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.

17. Effective capacitance calculated from the equation C = $\frac{I \Delta t}{\Delta V}$ with $\Delta V = 3$ volts and power supplies at nominal levels.

18. CAS = VIHC to disable DOUT.

insertion equipment, provides highest possible system bit densities and simplifies system upgrade from 4K to 16K RAMs for new generation applications. Non-critical clock timing requirements allow use of the multiplexing technique while maintaining high perfomance.

SUPPLEMENTAL DATA SHEET TO BE USED IN CONJUNCTION WITH MOSTEK MK4116-2/3 AND MK4116-4 DATA SHEETS