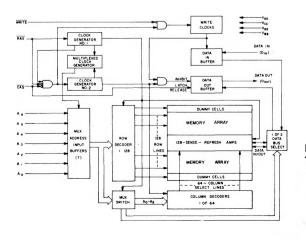
SUPPLEMENT

FEATURES


- □ Recognized industry standard 16-pin configuration from MOSTEK
- □ 250ns access time, 410ns cycle
- $\Box \pm 10\%$ tolerance on all power supplies (+12V, ±5V)
- □ Low power: 462mW active, 20mW standby (max)
- Output data controlled by CAS and unlatched at end of cycle to allow two dimensional chip selection and extended page boundary
- Common I/O capability using "early write" operation

DESCRIPTION

The MK 4116 is a new generation MOS dynamic random access memory circuit organized as 16,384 words by 1 bit. As a state-of-the-art MOS memory device, the MK 4116 (16K RAM) incorporates advanced circuit techniques designed to provide wide operating margins, both internally and to the system user, while achieving performance levels in speed and power previously seen only in MOSTEK's high performance MK 4027 (4K RAM).

The technology used to fabricate the MK 4116 is MOSTEK's double-poly, N-channel silicon gate, POLY II to process. This process, coupled with the use of a single transistor dynamic storage cell, provides the maximum possible circuit density and reliability, while maintaining high performance

FUNCTIONAL DIAGRAM

- Read-Modify-Write, RAS-only refresh, and Pagemode capability
- □ All inputs TTL compatible, low capacitance, and protected against static charge
- □ 128 refresh cycles (2 msec refresh interval)
- □ ECL compatible on VBB power supply (-5.7V)
- □ MKB version screened to MIL-STD-883
- □ JAN version available to MIL-M-38510/240

capability. The use of dynamic circuitry throughout, including sense amplifiers, assures that power dissipation is minimized without any sacrifice in speed or operating margin. These factors combine to make the MK 4116 a truly superior RAM product.

Multiplexed address inputs (a feature pioneered by MOSTEK for its 4K RAMS) permits the MK 4116 to be packaged in a standard 16-pin DIP. This recognized industry standard package configuration, while compatible with widely available automated testing and insertion equipment, provides highest possible system bit densities and simplifies system upgrade from 4K to 16K RAMs for new generation applications. Non-critical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

PIN CONNECTIONS

VBB	1 [•	□ 16	Vss
DIN	2 [D 15	CAS
WRITE	3 C	14	Dout
RAS	4 C] 13	A 6
Ao	5 C	3 12	Aз
A ₂	6 [þu	Α4
A	7 [þю	Α5
V _{DD}	8 C	و تر	v_{cc}

PIN FUNCTIONS

A0-A6	Address Inputs	WRITE	Read/Write Input
CAS	Column Address	VBB	Power (-5V)
	Strobe	Vcc	Power (+5V)
D _{IN}	Data In	VDD	Power (+12V)
DOUT	Data Out	VSS	Ground
RAS	Row Address Strobe		

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to VBB	0.5V to +20V
Voltage on VDD, VCC supplies relative to VSS.	
$V_{BB}-V_{SS}$ ($V_{DD}-V_{SS}>0V$)	OV
Operating temperature, TA (Ambient)	0℃ to + 70℃
Storage temperature (Ambient) (Ceramic)	65°C to + 150°C
Storage temperature (Ambient) (Plastic)	55°C to + 125°C
Short circuit output current	50mA
Power dissipation	1 Watt

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C)^{1}$

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Supply Voltage	VDD VCC VSS VBB	10.8 4.5 0 4.5	12.0 5.0 0 -5.0	13.2 5.5 0 -5.7	Volts Volts Volts Volts	1 1,2 1 1
Input High (Logic 1) Voltage, RAS, CAS, WRITE	VIHC	2.4	-	7.0	Volts	1
Input High (Logic 1) Voltage, all inputs except RAS, CAS WRITE	VIH	2.2	-	7.0	Volts	1
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	_	.8	Volts	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le /0^{\circ}C)^{1}$ (VDD = 12.0V ±10%; VCC = 5.0V ±10%; -5.7V ≤ VBB ≤ -4.5; VSS =0V)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
OPERATING CURRENT Average power supply operating current (RAS, CAS cycling; t _{RC} = 410ns)	IDD1 ICC1 IBB1		35 200	mA μA	3 4
STANDBY CURRENT Power supply standby current (RAS = VIHC, DOUT = High Impedance)	IDD2 ICC2 IBB2	-10	1.5 10	mA μA μA	
REFRESH CURRENT Average power supply current, refresh mode (RAS cycling, CAS = VIHC; tRC = 410ns)	IDD3 ICC3 IBB3	-10	27 10	mΑ μΑ μΑ	3
PAGE MODE CURRENT Average power supply current, page-mode operation (RAS = VIL, CAS cycling; tPC = 275ns)	IDD4 ICC4 IBB4		27	mΑ μ Α	3 4
INPUT LEAKAGE Input leakage current, any input $(V_{BB} = -5V, 0V \le V_{IN} \le +7.0V$, all other pins not under test = 0 volts)	¹ 1(L)	-10	10	μΑ	
OUTPUT LEAKAGE Output leakage current (DOUT is disabled, $0V \le V_{OUT} \le +5.5V$)	^I O(L)	10	10	μΑ	
OUTPUT LEVELS Output high (Logic 1) voltage (IOUT = -5mA)	VOH	2.4		Volts	3
Output low (Logic 0) voltage (IOUT = 4.2 mA)	VOL	1	0.4	Volts	

NOTES:

5

1. All voltages referenced to V_{SS},

2. Output voltage will swing from VSS to V_{CC} when activated with no current loading. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh

operations or data retention. However, the $\rm V_{OH}$ (min) specification is not guaranteed in this mode.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (5,6,7)

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C) V_{DD} = 12.0V \pm 10\%; V_{CC} = 5.0V \pm 10\%; V_{SS} = 0V, -5.7V \le V_{BB} \le -4.5V)$

		MK4116-4		1	T
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Random read or write cycle time	^t RC	410		ns	
Read-write cycle time	^t RWC	425		ns	
Read Modify Write	tRMW	500		ns	
Page mode cycle time	^t PC	275		ns	
Access time from RAS	^t RAC		250	ns	8,10
Access time from CAS	^t CAC		165	ns	9,10
Output buffer turn-off delay	tOFF	0	60	ns	11
Transition time (rise and fall)	tŢ	3	50	ns	7
RAS precharge time	tRP	150		ns	
RAS pulse width	^t RAS	250	10000	ns	
RAS hold time	trish	165		ns	
CAS pulse width	tCAS	165	10000	ns	
CAS hold time	tCSH	250		ns	
RAS to CAS delay time	tRCD	35	85	ns	12
CAS to RAS precharge time	tCRP	-20		ns	
Row Address set-up time	^t ASR	0		ns	
Row Address hold time	^t RAH	35		ns	
Column Address set-up time	tASC	-10		ns	
Column Address hold time	^t CAH	75		ns	
Column Address hold time referenced to RAS	tAR	160		ns	
Read command set-up time	tRCS	0		ns	
Read command hold time	^t RCH	0		ns	
Write command hold time	tWCH	75		ns	
Write command hold time referenced to RAS	twcr	160		ns	
Write command pulse width	twp	75		ns	
Write command to RAS lead time	tRWL	85		ns	
Write command to CAS lead time	tCWL	85		ns	
Data-in set-up time	^t DS	0		ns	13
Data-in hold time	^t DH	75		ns	13
Data-in hold time referenced to RAS	^t DHR	160		ns	
CAS precharge time (for page-mode cycle only)	tCP	100		ns	
Refresh period	^t REF		2	ms	
WRITE command set-up time	tWCS	-20		ns	14
CAS to WRITE delay	tCWD	90		ns	14
RAS to WRITE delay	tRWD	175		ns	14

3. IDD1, IDD3, and IDD4 depend on cycle rate. The maximum specified current values are for t_{RC} =410ns and t_{PC} =275ns. IDD limit at other cycle rates are determined by the following equattions:

I DD1 (max) [MA] = 10+10.25 x cycle rate [MHz] IDD3 (max) [MA] = 10+7 x cycle rate [MHz] IDD4 (max) [MA] = 10 + 4.7 x cycle rate [MHz]

- 4. I_{CC1} and I_{CC4} depend upon output loading. During readout of high level data V_{CC} is connected through a low impedance (135 typ) to data out. At all other times I_{CC} consists of leakage currents only.
- Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
- AC measurements assume t_T=5ns.
- V_{IHC} (min) or V_{IH}((min) and V_{IL}(max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL}.
- Assumes that t_{RCD} ≤ t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 9. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 10. Measured with a load equivalent to 2 TTL loads and 100pF.

 tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

12. Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .

- These parameters are <u>referenced</u> to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
- 14. tWCS, t_{CWD} and t_{RWD} are restrictive operating parameters in read write and read modify write cycles only. If t_{WCS} \geq t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If t_{CWD} \geq t_{CWD} (min) and t_{RWD} \geq t_{RWD} (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell; If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
- 15. Effective capacitance calculated from the equation $C=\underline{I} \, \underline{\Delta} \, \mathbf{t}$ with $\Delta \, \mathbf{v}=3$ volts and power supplies at nominal levels.
- 16. CAS = VIHC to disable DOUT.

AC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C) (V_{DD} = 12.0V \pm 10\%; V_{SS} = 0V, -5.7V \le V_{BB} \le -4.5V)$

PARAMETER	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance (A0-A6), DIN	CI1	4	5	pF	17
Input Capacitance RAS, CAS, WRITE	C12	8	10	pF	17
Output Capacitance (DOUT)	C ₀	5	7	pF	17,18

DESCRIPTION (continued)

System oriented features include \pm 10% tolerance on all power supplies, direct interfacing capability with high performance logic families such as Schottky TTL, maximum input noise immunity to minimize "false triggering" of the inputs (a common cause of soft errors), on-chip address and data registers which eliminate the need for interface registers, and two chip select methods to allow the user to determine the appropriate speed/power characteristics of his memory system. The MK 4116 also incorporates several flexible timing/operating modes. In addition to the usual read, write, and read-modify-write cycles, the MK 4116 is capable of delayed write cycles, page-mode operation and RAS-only refresh. Proper control of the clock inputs(RAS, CAS and WRITE) allows common I/O capability, two dimensional chip selection, and extended page boundaries (when operating in page mode).

SUPPLEMENTAL DATA SHEET TO BE USED IN CONJUNCTION WITH MOSTEK MK4116(J/N/E)-2/3 DATA SHEET.