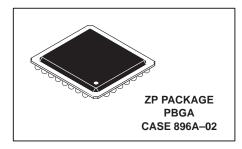
512K x 9 Bit Separate I/O Synchronous Fast Static RAM

The MCM67Q909 is a 4M-bit static random access memory, organized as 512K words of 9 bits. It features separate TTL input and output buffers, which drive 3.3 V output levels, and incorporates input and output registers on-board with high speed SRAM. It also features transparent—write and data pass—through capabilities.

The synchronous design allows for precise cycle control with the use of an external single clock (K). The addresses (A0 – A18), data input (D0 – D8), data output (Q0 – Q8), write—enable ($\overline{\mathbb{Q}}$), chip—enable ($\overline{\mathbb{E}}$), and output—enable ($\overline{\mathbb{G}}$), are registered on the rising edge of clock (K).


The control pins $(\overline{E}, \overline{W}, \overline{G})$ function differently in comparison to most synchronous SRAMs. This device will not deselect with \overline{E} high. The RAM remains active at all times. If \overline{E} is registered high, the output pins (Q0-Q8) will be driven if \overline{G} is registered low. The transparent write feature allows the output data to track the input data. \overline{E} , \overline{G} , and \overline{W} must be asserted to perform a transparent write (write and pass–through). The input data is available at the ouputs on the next rising edge of clock (K).

The pass–through function is always enabled. \overline{E} high disables the write to the array while allowing a pass–through cycle to occur on the next rising edge of clock (K). Only a registered \overline{G} high will three–state the outputs.

The MCM67Q909 is available in an 86-bump surface mount PBGA (Plastic Ball Grid Array) package.

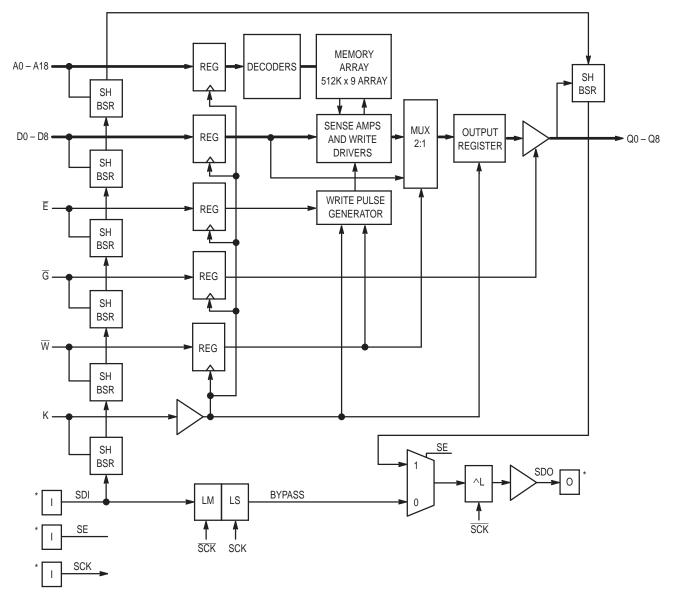
- Single 5 V ± 5% Power Supply
- Fast Cycle Time: 10 ns and 12 ns Max
- Single Clock Operation
- TTL Input and Output Levels (Outputs LVTTL Compatible)
- Address, Data Input, E, W, and G Registers On-Chip
- 100 MHz Maximum Clock Cycle Time
- Self-Timed Write
- Separate Data Input and Output Pins
- Transparent-Write and Pass-Through
- High Output Drive Capability: 50 pF/Output at Rated Access Time
- Boundary Scan Implementation
- 86–Bump PBGA Package for High Speed Operation

MCM67Q909

PIN NAMES
$\begin{array}{cccc} A0-A18 & Address Input \\ \hline \overline{E} & Chip Enable \\ \hline \overline{W} & Write Enable \\ \hline \overline{G} & Output Enable \\ \hline D0-D8 & Data Inputs \\ Q0-Q8 & Data Outputs \\ \hline K & Clock Input \\ SCK & Scan Clock Input \\ SCK & Scan Clock Input \\ SE & Scan Enable \\ SDI & Scan Data Input \\ SDO & Scan Data Output \\ \hline VCC & +5 V Power Supply \\ VSS & Ground \\ NC & No Connection \\ \hline \end{array}$

PIN ASSIGNMENT

	1	2	3	4	5	6	7	8	9	
Α		O E	$\frac{\bigcirc}{\mathbb{W}}$	° Vcc	O SDI	O SDO	O A4	O A0		\
В	O A16	O A14	$\frac{\circ}{G}$	O K	O Vec	O A6	Ο Δ2	\circ VSS	O D8	
С	O D7	○ A15	O A17	VCC O K O VSS	V _{SS} ○ V _{SS}	$^{\circ}_{VSS}$	A2 O VSS	Q8 Q6	$^{\circ}_{VSS}$	
D	°V _{SS}	O Q7	$^{\circ}_{\text{VSS}}$	Vss	o Vss	o Vss	V _{SS}	O Q6	O D6	
Е	O D5	O VSS	O Vss	o Vss	Vss	$^{\circ}_{\text{VSS}}$	o Vss	° VSS	$^{\circ}_{VCC}$	
F	0	0	0	0	0		\circ	O D4	0 Q4	
G	V _{CC} O D3 O V _{SS}	O Q5 O Q3	○ VSS ○ VSS ○ VSS ○ A18	V _{SS} O V _{SS}	∨ss ∨ss ∨ss ∨ss	V _{SS} O V _{SS}	V _{SS} ○ V _{SS}	O D2 O D0	O Q2 O VSS	
Н	\circ VSS	O D1	O A18	O V99	\circ	V _{SS} O V _{SS}	O V _{SS}	O D0	\circ	
J	0 Q1	O A12	O A10	O Vss	()	O A8	O A5	O A1	0 Q0	
K		O A13	O A11	VSS OSCK	A9 O VCC	O SE	O A7	O A3	/	/


TOP VIEW

Not to Scale

REV 6 7/12/00

BLOCK DIAGRAM

* Four added test pins.

NOTES:

- 1. Bypass mode is entered with SE low and SCK cycled.
- 2. SH BSR = shadow bypass scan register.
- 3. There are 41 bumps used in boundary scan. V_{SS}, V_{CC}, NC, SDI, SDO, SE, and SCK not used in scan path.
 4. SDO output sequence: A6, A4, A2, A0, D8, Q8, D6, Q6, D4, Q4, D2, Q2, D0, Q0, A18, A1, A3, A5, A7, A8, A9, A10, A11, A12, A13, Q1, D1, Q3, D3, Q5, D5, Q7, D7, A15, A16, A14, A17, \overline{E} , \overline{G} , \overline{W} , K.

TRUTH TABLE

E (t _n)	W (t _n)	G (t _{n+1})	Mode	D0 – D8 (t _n)	Q0 – Q8 (t _{n+1})	V _{CC} Current
L	L	L	Write and Pass–Through	Valid	D0 – D8 (t _n)	ICC
		Н	Write	Valid	High–Z	lcc
Н		L	Pass–Through	Valid	D0 – D8 (t _n)	lcc
	-	Н	Pass-Through	Don't Care	High–Z	Icc
X	н	L	Read	Don't Care	Q _{out} (t _n)	Icc
	''	Н	Read	Don't Care	High–Z	ICC

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to 7.0	V
Voltage Relative to VSS for Any Pin Except VCC	V _{in} , V _{out}	-0.5 to V _{CC} + 0.5	V
Output Current	l _{out}	±30	mA
Power Dissipation	PD	1.7	W
Temperature Under Bias	T _{bias}	-10 to 85	°C
Operating Temperature	TA	0 to 70	°C
Storage Temperature — Plastic	T _{stg}	-55 to 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This is a synchronous device. All synchronous inputs must meet specified setup and hold times with stable logic levels for *ALL* rising edges of clock (K) while the device is selected.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high–impedance circuits.

PACKAGE THERMAL CHARACTERISTICS (See Note 1)

Rating	Symbol	Max	Unit	Notes
Junction to Ambient Thermal Resistance	$R_{\theta JA}$ or θ_{JA}	31.7	°C/W	2
Junction to Case Thermal Resistance	$R_{\theta JC}$ or θ_{JC}	6.8	°C/W	3
Thermal Characterization Parameter	Ψ JT	2.2	°C/W	4

NOTES:

- 1. All values are determined using a single-layer thermal test board.
- 2. Junction to ambient thermal resistance is based on measurements on a horizontal single–sided printed circuit board per SEMI G38–87 and EIA/JESD 51–6 with a 400 ft/min air flow.
- 3. Junction to case thermal resistance is based on measurements using a cold plate per MIL-STD 883D, Method 1012.1 and SEMI G30-88 with the exception that the cold plate temperature is used for the case temperature.
- 4. Thermal characterization parameter, Ψ_JT, is defined in EIA/JESD 51–2. It is a measure of the difference in temperature between the junction and a thermocouple on top of the package, normalized by the power dissipation with a 400 ft/min air flow.

MOTOROLA FAST SRAM MCM67Q909

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = $5.0 \text{ V} \pm 5\%$, T_A = 0 to 70° C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS AND SUPPLY CURRENTS

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Operating Voltage Range)	Vcc	4.75	5.25	V
Input High Voltage	V _{IH}	2.2	V _{CC} + 0.3**	V
Input Low Voltage	V _{IL}	-0.5*	0.8	V
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	±1.0	μА
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	llkg(O)	_	±1.0	μА
AC Supply Current (I _{out} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	_	230	mA
Output Low Voltage (I _{OL} = +8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = -4.0 mA)	Voн	2.4	3.3	V

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, $T_A = 25^{\circ}\text{C}$, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Max	Unit
Address and Data Input Capacitance	C _{in}	6	pF
Control Pin Input Capacitance	C _{in}	6	pF
Output Capacitance	C _{out}	8	pF

MCM67Q909 MOTOROLA FAST SRAM

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 5\%, T_A = 0 \text{ to } 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

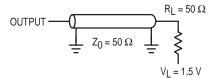
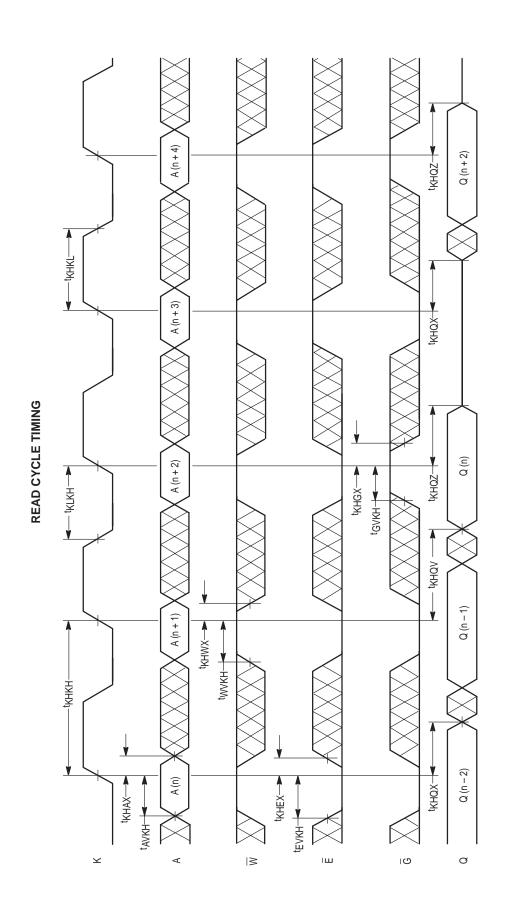
Input Timing Measurement Reference Level 1.5 V	Output Timing Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load Figure 1 Unless Otherwise Noted
Input Rise/Fall Time	

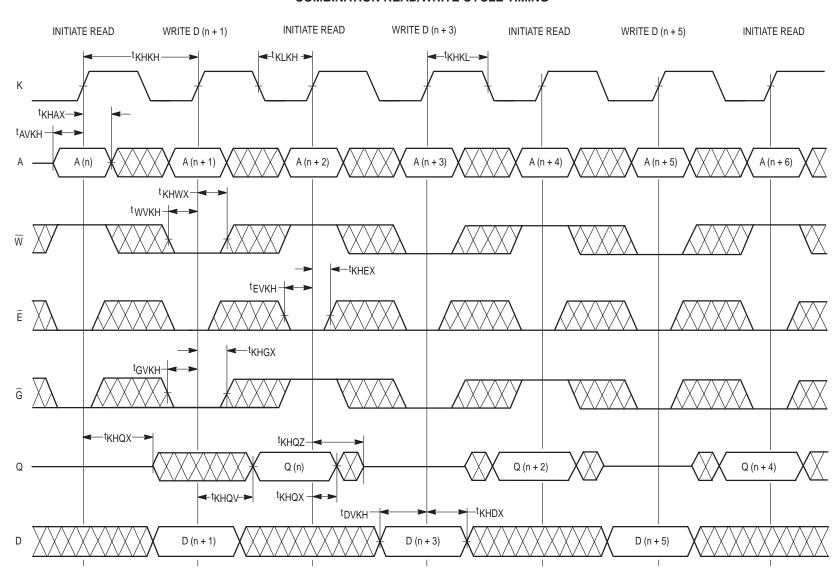
READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

			MCM670	2909–10	MCM670	2909–12		
Parameter	Sym	bol	Min	Max	Min	Max	Unit	Notes
Cycle Time	^t KH	KH	10	_	12	_	ns	1
Clock Access Time	tKH	QV	_	5	_	5	ns	2
Clock Low Pulse Width	^t KL	KH	4	_	4	_	ns	
Clock High Pulse Width	^t KH	KL	4	_	4	_	ns	
Clock High to Data Output Invalid		QX	2	_	2	_	ns	
Clock High to Data Output High-Z	^t KH	QZ	_	5	_	5	ns	3
Setup Times:	A t _{AV} W t _{WV} E t _{EV} G t _{GV} D8 t _{DV}	KH KH KH	3	_	3	_	ns	4
Hold Times:	A tKH W tKH E tKH G tKH D8 tKH	WX EX GX	1.5	_	1.5	_	ns	4

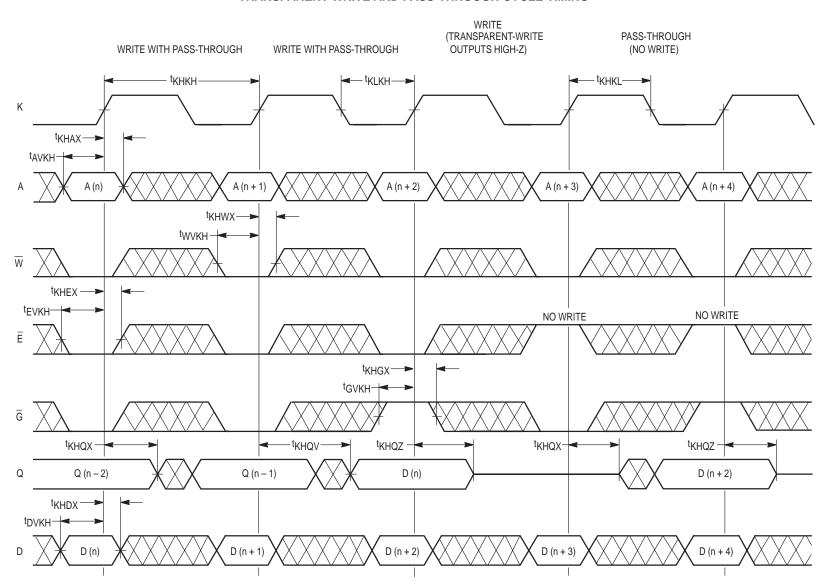
NOTES:

- 1. All read and write cycles are referenced from K.
- 2. Valid data from clock high will be the data stored at the address or the last valid read cycle.
- 3. Measured at ±200 mV from steady state.
- 4. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times with stable logic levels for *ALL* rising edges of clock (K) while the device is selected.


Figure 1. AC Test Load

MOTOROLA FAST SRAM MCM67Q909



MCM67Q909 MOTOROLA FAST SRAM

COMBINATION READ/WRITE CYCLE TIMING

TRANSPARENT-WRITE AND PASS-THROUGH CYCLE TIMING

BOUNDARY SCAN CYCLE TIMING

		MCM67Q909-10 MCM67Q909-12			
Parameter	Symbol	Min	Max	Unit	Notes
Cycle Time	tCHCH2	100	_	ns	
Clock High Pulse Width	tCHCL2	40	_	ns	
Clock Low Pulse Width	tCLCH2	40	_	ns	
Scan Mode Setup Time	tss	10	_	ns	1
Bypass Mode Setup Time	tBS	10	_	ns	2
Scan Mode Recovery Time	tSR t	100	_	ns	3
SCK Low to SE Hold High	^t CLMH	10	_	ns	4
SE High to SCK High Setup	^t MHCH	10	_	ns	5
SCK High to SE Low Hold Time	^t CHML	10	_	ns	6
SDI Valid to SCK High Setup	tIVCH	10	_	ns	
SCK High to SDI Don't Care	tCHIX	10	_	ns	
SCK Low to SDO Valid	^t CLOV	_	20	ns	

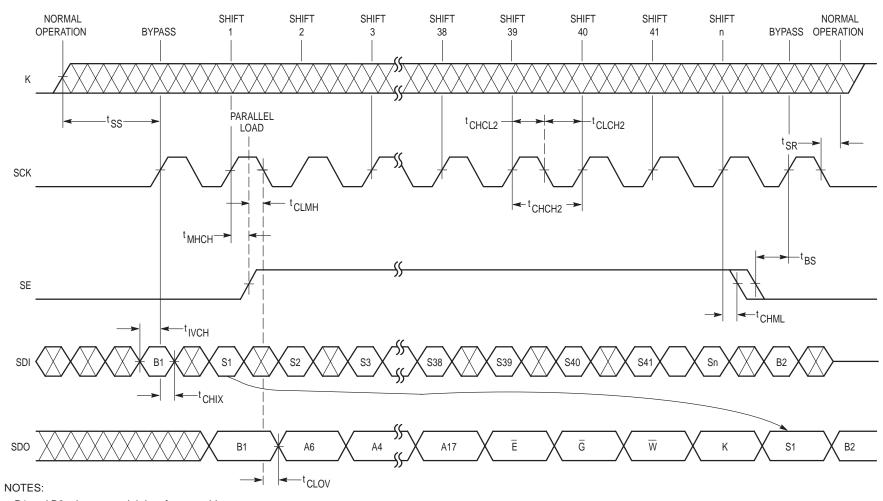
NOTES:

- 1. The minimum delay required between ending normal operation and beginning scan operations.
- 2. The minimum delay required between ending shift mode and beginning bypass mode.
- 3. The minimum delay required before restarting normal RAM operation.
- 4. The minimum delay required before executing a parallel load operation.
- 5. The minimum delay required between a parallel load operation and a shift.
- 6. Minimum shift command hold time.

BOUNDARY SCAN

OVERVIEW

Boundary scan is a simple, non-intrusive scheme that allows verification of electrical continuity for each of a clocked RAMs logically active inputs and I/Os without adversely affecting RAM performance. Boundary scan allows the user to monitor the logic levels applied to each signal I/O on the RAM, and to shift them out in a serial bit stream.

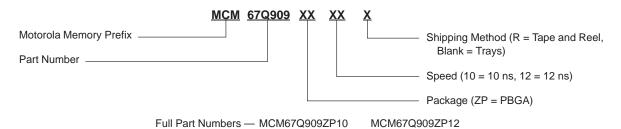

OPERATION

Boundary scan requires four signal pins for implementation: scan data in (SDI), scan data out (SDO), scan clock (SCK, active high), and scan enable (SE, active high).

Boundary scan provides three modes of operation: (1) normal RAM operation, (2) scan, and (3) bypass. For normal RAM operation, SCK and SE must be held low. The RAM will always return to normal operation immediately after the RAM receives a rising edge of the RAM input clock (K) with SCK and SE held low. To enter scan mode, SCK is activated. The first rising edge of SCK is used to latch in the data on the scan registers. SE is then driven high to disable additional input data from entering the scan registers. Every falling edge of SCK serially shifts data through the scan registers and onto the SDO pin. To enter bypass mode, simply exercise SCK with SE held low. In this mode, SDI is sampled on the rising edge of SCK. The level found on SDI is then driven out on SDO on the next falling edge of SCK.

MOTOROLA FAST SRAM MCM67Q909

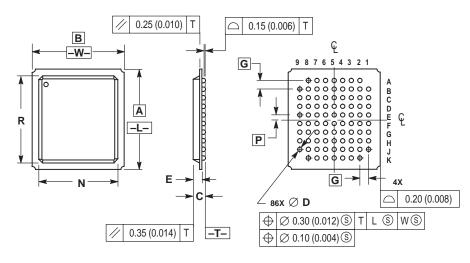
BOUNDARY SCAN TIMING DIAGRAM


B1 and B2 = bypass serial data from outside source.

S1 - Sn + 1 = serial scan data from outside source.

S1 - Sn = RAMs input register contents.

Scan order is: A6, A4, A2, A0, D8, Q8, D6, Q6, D4, Q4, D2, Q2, D0, Q0, A18, A1, A3, A5, A7, A8, A9, A10, A11, A12, A13, Q1, D1, Q3, D3, Q5, D5, Q7, D7, A15, A16, A14, A17, E, G, W, K.


ORDERING INFORMATION (Order by Full Part Number)

MCM67Q909ZP10R MCM67Q909ZP12R

PACKAGE DIMENSIONS

ZP PACKAGE PBGA CASE 896A-02

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	17.78	BSC	0.700 BSC		
В	16.26	BSC	0.640	BSC	
С	1.84	2.44	0.073	0.096	
D	0.69	0.81	0.028	0.031	
Е	1.33	1.73	0.053	0.068	
G	1.524	BSC	0.060	BSC	
N	N 13.80 14.20		0.544 0.559		
Р	0.762	BSC	0.030 BSC		
R	15 29	15 69	0.602	0.617	

MOTOROLA FAST SRAM MCM67Q909

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and manufacture of the part. Motor

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447

TECHNICAL INFORMATION CENTER: 1-800-521-6274

HOME PAGE: http://motorola.com/semiconductors/

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong. 852-26668334

MCM67Q909/D