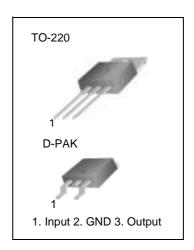
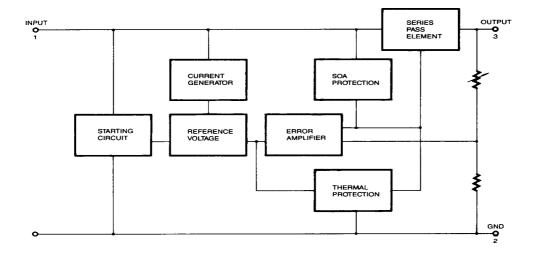


MC78XX/LM78XX


3-terminal 1A positive voltage regulator

Features


- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 11, 12, 15, 18, 24V
- Thermal Overload Protection
- · Short Circuit Protection
- Output Transistor Safe Operating area Protection

Description

The MC78XX/LM78XX series of three-terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V)	VI	35	V
(for VO = 24V)	Vı	40	V
Thermal Resistance Junction-Cases	$R_{\theta JC}$	5	°C/W
Thermal Resistance Junction-Air	RθJA	65	°C/W
Operating Temperature Range (MC78XXCT/LM78XXCT/MC78XXCDT)	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (MC7805/LM7805)

 $(Refer \ to \ test \ circuit \ ,0^{o}C < T_{J} < 125^{o}C, \ I_{O} = 500 mA, \ V_{I} = 10V, \ C_{I} = 0.33 \mu F, \ C_{O} = 0.1 \mu F, \ unless \ otherwise \ specified)$

Davamatar	Cymah al	Conditions		MC7	805/LM	7805	V mV
Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		4.8	5.0	5.2	
Output Voltage	Vo	5.0 mA \leq lo \leq V _I = 7V to 20V V _I = 8V to 20V		4.75	5.0	5.25	V
Line Regulation	ΔVΩ	T _{J=+25} °C	Vo = 7V to 25V	-	4.0	100	m\/
Line Regulation	ΔνΟ	1J=+25 C	VI = 8V to 12V	-	1.6	50	IIIV
			I _O = 5.0mA to1.5A	-	9	100	
Load Regulation	ΔVO	TJ=+25 °C	IO =250mA to 750mA	-	4	50	mV
Quiescent Current	IQ	TJ =+25 °C		-	5.0	8	mA
Quiacont Current Change	Alo	Io = 5mA to 1.	0A	-	0.03	0.5	m /\
Quiescent Current Change	ΔlQ	V _I = 7V to 25V		-	0.3	1.3	mA
Output Voltage Drift	ΔV0/ΔΤ	Io= 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	OKHz, TA=+25 °C	-	42	-	μV
Ripple Rejection	RR	f = 120Hz Vo = 8V to 18	f = 120Hz VO = 8V to 18V		73	-	dB
Dropout Voltage	Vo	IO = 1A, TJ =+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	15	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA =+25 °C		-	230	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	А

 $[\]bullet$ Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7806)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 11V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Domomoton	Parameter Symbol Conditions				MC7806		l lm it
Parameter	Symbol		onaitions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		5.75	6.0	6.25	
Output Voltage	Vo	$ \begin{array}{c} 5.0 \text{mA} \leq I_{O} \leq \\ \text{VI} = 8.0 \text{V to 21} \\ \text{VI} = 9.0 \text{V to 21} \\ \end{array} $		5.7	6.0	6.3	V
Line Regulation	ΔVΩ	TJ =+25 °C	V _I = 8V to 25V	-	5	120	mV
Line Regulation	ΔνΟ	1J=+25 C	V _I = 9V to 13V	-	1.5	60	IIIV
Load Pagulation	ΔVΩ	T25 %	IO =5mA to 1.5A	-	9	120	mV
Load Regulation	ΔνΟ	1J=+25°C	TJ =+25 °C		3	60	IIIV
Quiescent Current	IQ	TJ =+25 °C		-	5.0	8	mA
Quicecent Current Change	Alo	$I_O = 5mA \text{ to } 1A$	1	-	-	0.5	mA
Quiescent Current Change	ΔlQ	VI = 8V to 25V		-	-	1.3	IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k	(Hz, TA =+25 °C	-	45	-	μV
Ripple Rejection	RR	f = 120Hz V _I = 9V to 19V			75	-	dB
Dropout Voltage	Vo	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25 °C		-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

[•] Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7808)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 14V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Devemeter	Cumbal	Conditions		N	/IC780	8	l lmit
Parameter	Symbol		onaitions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		7.7	8.0	8.3	
Output Voltage	Vo	$5.0 \text{mA} \le I_{\text{O}} \le 1$ V _I = 10.5V to 23 V _I = 11.5V to 23	V	7.6	8.0	8.4	V
Line Regulation	ΔVΩ	TJ =+25 °C	V _I = 10.5V to 25V	-	5.0	160	mV
Line Regulation	ΔνΟ	1J =+25 °C	V _I = 11.5V to 17V	-	2.0	80	IIIV
Load Regulation	ΔVΩ	TJ =+25 °C	IO = 5.0mA to 1.5A	-	10	160	mV
Load Regulation	ΔνΟ	1J =+25 °C	IO= 250mA to 750mA	-	5.0	80	IIIV
Quiescent Current	lQ	TJ =+25 °C		-	5.0	8	mA
		I _O = 5mA to 1.0	A	-	0.05	0.5	
Quiescent Current Change	ΔlQ	V _I = 10.5A to 25	V	-	0.5	1.0	mA
		V _I = 11.5V to 25	V	-		-	
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	Hz, T _A =+25 °C	-	52	-	μV
Ripple Rejection	RR	f = 120Hz, V _I = 11.5V to 21.5		56	73	-	dB
Dropout Voltage	Vo	IO = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25 °C		-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

[•] Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7809)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 15V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Donomoton	Complete		onditions	N	/IC7809)	l lmit
Parameter	Symbol		Conditions		Тур.	Max.	Unit
		T _J =+25 °C		8.65	9	9.35	
Output Voltage	Vo	5.0mA \le 10 \le 1.0A VI = 11.5V to 24V VI = 12.5V to 24		8.6	9	9.4	V
Line Degulation	ΔVΩ	TJ=+25 °C	V _I = 11.5V to 25V	-	6	180	mV
Line Regulation	ΔνΟ	1J=+25 °C	V _I = 12V to 25v	-	2	90	IIIV
Load Dogulation	ΔVΩ	TJ=+25 °C	IO = 5mA to 1.5A	-	12	180	mV
Load Regulation	ΔνΟ	1J=+25 °C	IO = 250mA to 750mA	-	4	90	mv
Quiescent Current	IQ	TJ=+25 °C		-	5.0	8	mA
		I _O = 5mA to 1.0	J	-	-	0.5	
Quiescent Current Change	ΔlQ	V _I = 11.5V to 26	V	-	-	1.3	mA
		V _I = 12.5V to 26	V	-	-	-	
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	Hz, T _A =+25 °C	-	58	-	μV
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V		56	71	-	dB
Dropout Voltage	Vo	IO = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =+25 °C		-	250	-	mA
Peak Current	IPK	TJ= +25 °C		-	2.2	-	Α

[•] Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7812)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 19V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Davamatar	Cymphal	C	onditions	N	/IC781	2	Unit	
Parameter	Symbol		onaitions	Min.	Тур.	Max.	Unit	
		T _J =+25 °C		11.5	12	12.5		
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A V _I = 14.5V to 27V V _I = 15.5V to 27V	V	11.4	12	12.6	V	
Line Degulation	41/0	T 25 90	V _I = 14.5V to 30V	-	10	240	mV	
Line Regulation	ΔVO	TJ =+25 °C	V _I = 16V to 22V	-	3.0	120	mv	
Load Bogulation	ΔVΩ	TJ =+25 °C	IO = 5mA to 1.5A	-	11	240	mV	
Load Regulation	ΔνΟ	1J=+25 °C	IO = 250mA to 750mA	-	5.0	120 mv	IIIV	
Quiescent Current	IQ	TJ =+25 °C		-	5.1	8	mA	
		I _O = 5mA to 1.0A		1	-	0.1	0.5	
Quiescent Current Change	ΔlQ	VI = 14.5V to 30V	V	-	0.5	1.0	mA	
		V _I = 15V to 30V		-	-	-		
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C	
Output Noise Voltage	VN	f = 10Hz to 100KH	Iz, T _A =+25 °C	-	76	-	μV	
Ripple Rejection	RR	f = 120Hz V _I = 15V to 25V		55	71	-	dB	
Dropout Voltage	Vo	IO = 1A, TJ=+25 °C		-	2	-	V	
Output Resistance	Ro	f = 1KHz		-	18	-	mΩ	
Short Circuit Current	Isc	VI = 35V, TA=+25 °C		-	230	-	mA	
Peak Current	IPK	TJ = +25 °C		-	2.2	-	Α	

[•] Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7815)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 23V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Devemeter	Cumbal	6	onditions		MC7815	j	Unit
Parameter	Symbol		onaitions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		14.4	15	15.6	
Output Voltage	Vo	$5.0 \text{mA} \le \text{IO} \le 1$ VI = 17.5V to VI= 18.5V to 3	30V	14.25	15	15.75	V
Line Degulation	4)/0	TJ =+25 °C	V _I = 17.5V to 30V	-	11	300	mV
Line Regulation	ΔVO	1J =+25 °C	V _I = 20V to 26V	-	3	150	mv
			IO = 5mA to 1.5A	-	12	300	
Load Regulation	ΔVO	TJ =+25 °C	IO = 250mA to 750mA	-	4	150	mV
Quiescent Current	IQ	TJ =+25 °C	1	-	5.2	8	mA
	ΔlQ	IO = 5mA to 1	.0A	-	-	0.5	
Quiescent Current Change		V _I = 17.5V to 30V		-	-	1.0	mA
		VI = 18.5V to	30V	-	-	-	
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	KHz, TA =+25 °C	-	90	-	μV
Ripple Rejection	RR	f = 120Hz V _I = 18.5V to 28.5V		54	70	-	dB
Dropout Voltage	Vo	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25 °C		-	250	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	Α

[•] Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7818)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 27V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Dovemeter	Cumbal	Conditions		N	MC7818	3	Unit
Parameter	Symbol		onaitions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		17.3	18	18.7	
Output Voltage	Vo	$5.0 \text{mA} \le \text{IO} \le 1.0 \text{A}$ V _I = 21V to 33V V _I = 22V to 33V	A, P _D ≤15W	17.1	18	18.9	V
Line Degulation	ΔVΩ	TJ =+25 °C	V _I = 21V to 33V	-	15	360	mV
Line Regulation	ΔνΟ	1J =+25 °C	V _I = 24V to 30V	-	5	180	IIIV
Load Dogulation	ΔVο	T25.90	IO = 5mA to 1.5A	-	15	360	mV
Load Regulation	ΔνΟ	1J =+25 °C	TJ =+25 °C		5.0	180	IIIV
Quiescent Current	IQ	TJ =+25 °C		-	5.2	8	mA
		I _O = 5mA to 1.0A	\ \	-	-	0.5	
Quiescent Current Change	Δ lQ	VI = 21V to 33V		-	-	1	mA
		V _I = 22V to 33V		-	-		
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, T _A =+25 °C	-	110	-	μV
Ripple Rejection	RR	f = 120Hz V _I = 22V to 32V		53	69	-	dB
Dropout Voltage	Vo	IO = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	22	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA=+25 °C		-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	А

[•] Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7824)

(Refer to test circuit 0° C < T_J < +125°C, I_O = 500mA, V_I = 33V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Donomoton	Councile of	0.	Conditions			4	l losis
Parameter	Symbol				Тур.	Max.	Unit
		T _J =+25 °C		23	24	25	
Output Voltage	Vo	$5.0 \text{mA} \le I_{O} \le 1.0.0 $ V _I = 27V to 38V V _I = 28V to 38V	A, P _D ≤ 15W	22.8	24	25.25	V
Line Regulation	ΔVο	T _J =+25 °C	V _I = 27V to 38V	-	17	480	mV
Line Regulation	ΔνΟ	1J =+25 C	V _I = 30V to 36V	-	6	240	IIIV
Load Population	ΔVΩ	T _J =+25 °C	IO = 5mA to 1.5A	-	15	480	mV
Load Regulation	ΔνΟ	1J =+25 C	IO = 250mA to 750mA	-	5.0	240	IIIV
Quiescent Current	IQ	TJ =+25 °C		-	5.2	8	mA
		IO = 5mA to 1.0A	1	-	0.1	0.5	
Quiescent Current Change	ΔlQ	VI = 27V to 38V		-	0.5	1	mA
		V _I = 28V to 38V		-	-	-	
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, T _A =+25 °C	-	60	-	μV
Ripple Rejection	RR	f = 120Hz V _I = 28V to 38V		50	67	-	dB
Dropout Voltage	Vo	IO = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	Ro	f = 1KHz		-	28	-	mΩ
Short Circuit Current	Isc	VI = 35V, T _A =+25 °C		-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

[•] Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Perfomance Characteristics

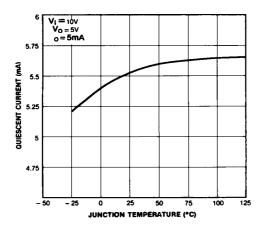


Figure 1. Quiescent Current

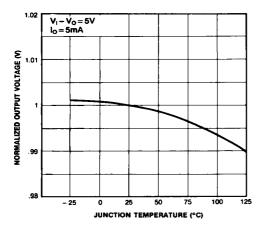


Figure 3. Output Voltage

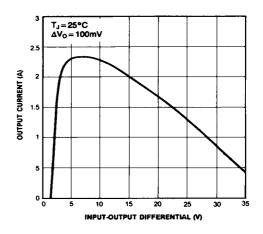


Figure 2. Peak Output Current

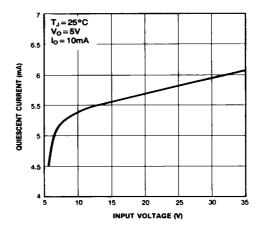


Figure 4. Quiescent Current

Typical Applications

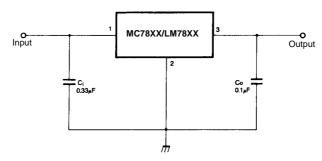


Figure 5. DC Parameters

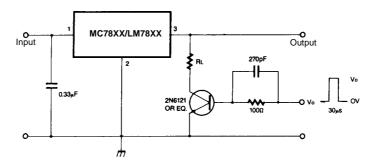


Figure 6. Load Regulation

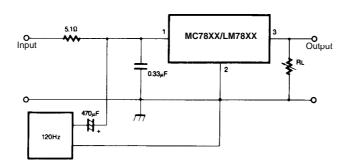


Figure 7. Ripple Rejection

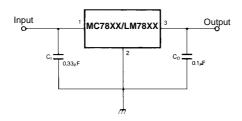


Figure 8. Fixed Output Regulator

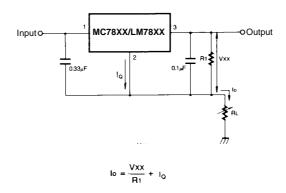


Figure 9. Constant Current Regulator

Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) C_I is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.

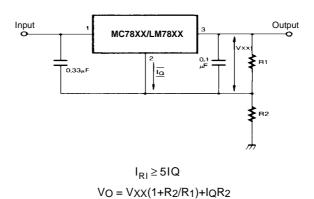


Figure 10. Circuit for Increasing Output Voltage

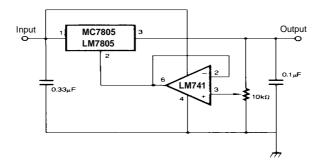


Figure 11. Adjustable Output Regulator (7 to 30V)

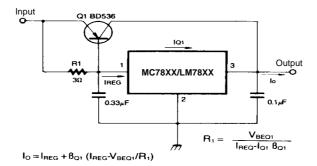


Figure 12. High Current Voltage Regulator

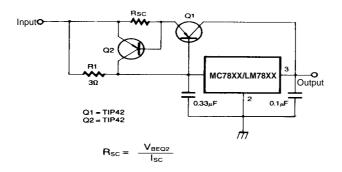


Figure 13. High Output Current with Short Circuit Protection

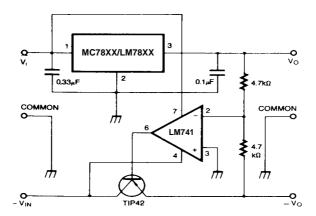


Figure 14. Tracking Voltage Regulator

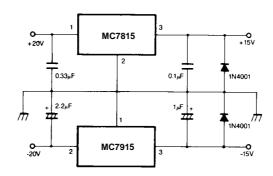


Figure 15. Split Power Supply (±15V-1A)

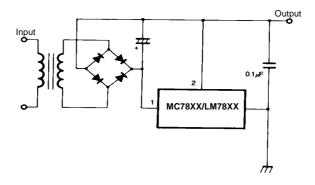


Figure 16. Negative Output Voltage Circuit

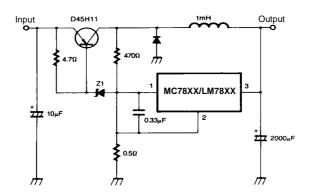
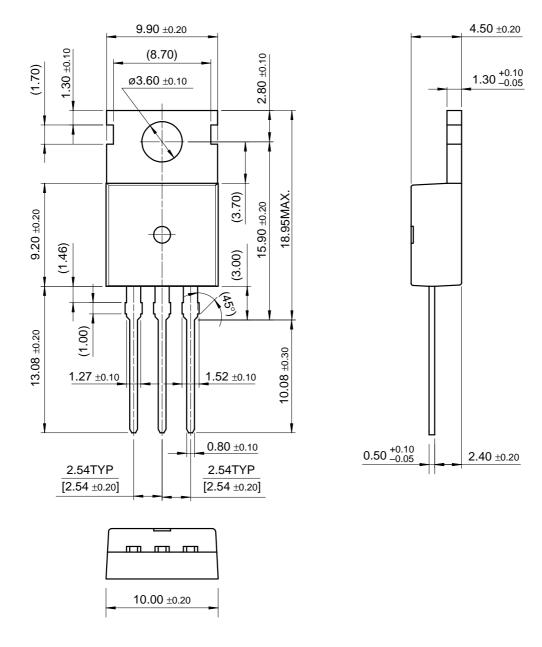
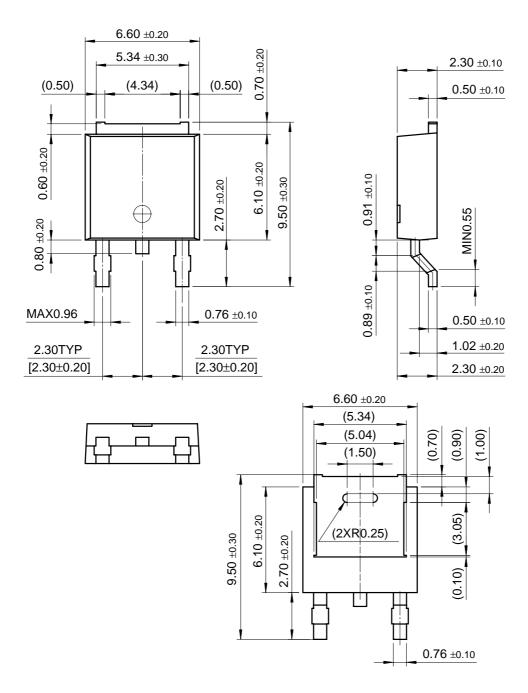



Figure 17. Switching Regulator

Mechanical Dimensions

Package


TO-220

Mechancal Dimensions (Continued)

Package

D-PAK

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7805CT	±4%	TO-220	0 ~ + 125°C

Product Number	Output Voltage Tolerance	Package	Operating Temperature
MC7805CT			
MC7806CT			
MC7808CT			
MC7809CT		TO-220	
MC7812CT	±4%	10-220	0 ~ + 125°C
MC7815CT			
MC7818CT			
MC7824CT			
MC7809CDT		D-PAK	

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com