Low-Voltage CMOS Octal Transceiver/Registered Transceiver With Dual Enable
 With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX652 is a high performance, non-inverting octal transceiver/registered transceiver operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX652 inputs to be safely driven from 5 V devices. The MC74LCX652 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Two Output Enable pins ($\overline{\mathrm{EEBA}}, \mathrm{OEAB}$) are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBA, SAB) can multiplex stored and real-time (transparent mode) data. In the isolation mode (both outputs disabled), A data may be stored in the B register or B data may be stored in the A register. When in the real-time mode, it is possible to store data without using the internal registers by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input (data retention is not guaranteed in this mode).

- Designed for 2.3 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5 V Tolerant - Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I Ioff Specification Guarantees High Impedance When VCC $=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States ($10 \mu \mathrm{~A}$)

Substantially Reduces System Power Requirements

- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V; Machine Model $>200 \mathrm{~V}$

MC74LCX652

LOW-VOLTAGE CMOS OCTAL TRANSCEIVER/ REGISTERED TRANSCEIVER WITH DUAL ENABLE

Figure 1. PIN NAMES

Pins	Function
AO-A7	Side A Inputs/Outputs
B0-B7	Side B Inputs/Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Select Control Inputs
OEBA, OEAB	Output Enable Inputs

Figure 2. 24-Lead Pinout (Top View)

Figure 3. Logic Diagram

MC74LCX652

TRUTH TABLE

Inputs						Data Ports		Operating Mode
OEAB	OEBA	CAB	CBA	SAB	SBA	An	Bn	
L	H					Input	Input	
		\uparrow	\uparrow	X	X	X	X	Isolation, Hold Storage
		\uparrow	\uparrow	X	X	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	Store A and/or B Data
H	H					Input	Output	
		\uparrow	X*	L	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Real Time A Data to B Bus
				H	X	X	QA	Stored A Data to B Bus
		\uparrow	X*	L	X	$\begin{aligned} & \text { I } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Real Time A Data to B Bus; Store A Data
				H	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { QA } \\ & \text { QA } \end{aligned}$	Clock A Data to B Bus; Store A Data
L	L					Output	Input	
		X*	\uparrow	X	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Real Time B Data to A Bus
				X	H	QB	X	Stored B Data to A Bus
		X*	\uparrow	X	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	Real Time B Data to A Bus; Store B Data
				X	H	$\begin{aligned} & \text { QB } \\ & \text { QB } \end{aligned}$		Clock B Data to A Bus; Store B Data
H	L					Output	Output	$1 \times$
		\uparrow	\uparrow	H	H	QB	QA	Stored A Data to B Bus, Stored B Data to A Bus

[^0]Real Time Transfer - Bus B to
Bus A

Store Data from Bus A, Bus B or Bus A and Bus B

Store Bus A in Both Registers or Store Bus B in Both Registers

Real Time Transfer - Bus A to Bus B

Transfer A Stored Data to Bus B or B Stored Data to Bus A or Both at the Same Time

OEAB	OEBA	CAB	CBA	SAB	SBA
H	H	Hor L	X	H	X
L	L	X	or L	X	H
H	L	H or L	Hor L	H	H

Figure 4. Bus Applications

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Note 1.	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
I_{O}		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{CC}	DC Output Source/Sink Current	± 50		mA
$\mathrm{I}_{\text {GND }}$	DC Supply Current Per Supply Pin	± 100	mA	
$\mathrm{~T}_{\text {STG }}$	DC Ground Current Per Ground Pin	± 100	mA	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Output in HIGH or LOW State. I_{O} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {cc }}$		$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)			$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
IOH	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			-24	mA
l OL	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$			24	mA
l_{OH}	HIGH Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			-12	mA
l_{OL}	LOW Level Output Current, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 2.)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		V
V_{IL}	LOW Level Input Voltage (Note 2.)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	V
V_{OH}	HIGH Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	

2. These values of V_{l} are used to test DC electrical characteristics only.

DC ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
I_{1}	Input Leakage Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
loz	3-State Output Current	$\begin{gathered} 2.7 \leq V_{C C} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$		± 5.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or V_{CC}		10	$\mu \mathrm{A}$
		$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \leq \mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
$\Delta \mathrm{l}$ C	Increase in ICC per Input	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

AC CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Condition	$\mathrm{T}_{\mathbf{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$			
		Min	Typ	Max	
	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
$\mathrm{~V}_{\mathrm{OLV}}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

[^1]
MC74LCX652

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF

WAVEFORM 2 - OEBA/OEAB to An/Bn OUTPUT ENABLE AND DISABLE TIMES $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

Figure 5. AC Waveforms

MC74LCX652

WAVEFORM 3 - CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH, An/Bn to CLOCK SETUP AND HOLD TIMES
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$ except when noted

WAVEFORM 4 - INPUT PULSE DEFINITION
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90% of 0 V to 2.7 V

Figure 5. AC Waveforms (Continued)

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 6. Test Circuit

MC74LCX652

PACKAGE DIMENSIONS

DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948H-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
2. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR FLASH OR PROTRUSION. INTERLEAD
PROTRUSION SHALL NOT EXCEED PROTRUSION SHALLN
$0.25(0.010)$ PER SIDE.
$0.25(0.010)$ PER SIDE.
DIMENSION K DOES NOT INCLUDE DAMBAR
DIMENSION K DOES NOT INCLUDE DA
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	7.70	7.90	0.303	0.311
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	0°	8°	0°	8°

MC74LCX652

PACKAGE DIMENSIONS

DW SUFFIX

PLASTIC SOIC PACKAGE
CASE 751E-04
ISSUE E

ON Semiconductor and (OiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: $\mathrm{H}=$ High Voltage Level
 h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition
 $\mathrm{L}=$ Low Voltage Level
 I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition
 $X=$ Don't Care
 $\uparrow=$ Low-to-High Clock Transition
 $\hat{\uparrow}=$ NOT Low-to-High Clock Transition
 $\mathrm{QA}=\mathrm{A}$ input storage register
 QB = B input storage register

 * = The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For Icc reasons, Do Not Float Inputs.

[^1]: 4. Number of outputs defined as " n ". Measured with " $\mathrm{n}-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. The LCX652 is characterized with 7 outputs switching with 1 output held LOW.
