

Low-Voltage CMOS Octal Transceiver/Registered Transceiver

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX646 is a high performance, non-inverting octal transceiver/registered transceiver operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX646 inputs to be safely driven from 5 V devices. The MC74LCX646 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Output Enable (\overline{OE}) and DIR pins are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBA, SAB) can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when the enable \overline{OE} is active LOW. In the isolation mode $(\overline{OE}$ HIGH), A data may be stored in the B register or B data may be stored in the A register. Only one of the two buses, A or B, may be driven at one time.

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0$ V
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V

MC74LCX646

LCX

LOW-VOLTAGE CMOS OCTAL TRANSCEIVER/ REGISTERED TRANSCEIVER

DT SUFFIX 24-LEAD PLASTIC TSSOP PACKAGE CASE 948H

DW SUFFIX 24-LEAD PLASTIC SOIC PACKAGE CASE 751E

PIN NAMES

Pins	Function
A0-A7 B0-B7 CAB, CBA SAB, SBA DIR, OE	Side A Inputs/Outputs Side B Inputs/Outputs Clock Pulse Inputs Select Control Inputs Output Enable Inputs

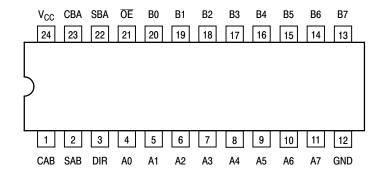


Figure 1. Pinout: 24-Lead Package (Top View)

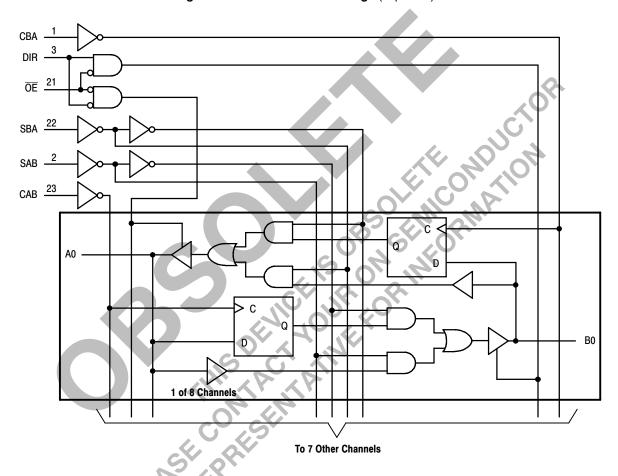


Figure 2. LOGIC DIAGRAM

TRUTH TABLE

		In	puts			Data	Ports	On exerting Made
ŌĒ	DIR	САВ	СВА	SAB	SBA	An	Bn	Operating Mode
Н	X					Input	Input	
				X	Х	X	Х	Isolation, Hold Storage
		↑	1	Х	×	l h X X	X X I h	Store A and/or B Data
L	Н					Input	Output	
		↑	X*	L	Х	L H	L H	Real Time A Data to B Bus
				Н	Х	Х	QA	Stored A Data to B Bus
		1	X*	L	Х	l h	L H	Real Time A Data to B Bus; Store A Data
				Н	Х	L H	QA QA	Clock A Data to B Bus; Store A Data
L	L					Output	Input	
		X*	↑	X	L	L H	L H	Real Time B Data to A Bus
				Х	Н	QB	Х	Stored B Data to A Bus
		X*	1	X	_	LH	l h	Real Time B Data to A Bus; Store B Data
				X	Н	QB QB	L	Clock B Data to A Bus; Store B Data

Н High Voltage Level

High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition

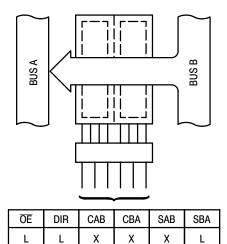
Low Voltage Level

Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition

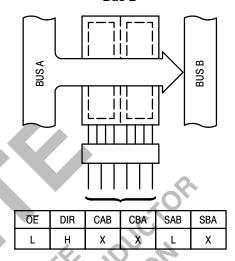
Don't Care Χ

Low-to-High Clock Transition

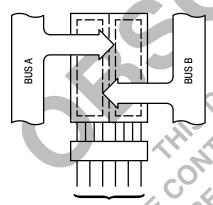
NOT Low-to-High Clock Transition


QA = A input storage register

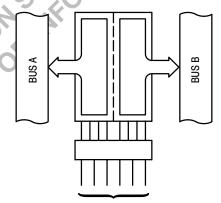
QB = B input storage register


B input storage register
The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For I_{CC} reasons, Do Not Float Inputs.

BUS APPLICATIONS


Real Time Transfer – Bus B to Bus A

Real Time Transfer – Bus A to Bus B



Store Data from Bus A, Bus B or Busses A and B

Ì	ŌĒ	DIR	CAB	CBA	SAB	SBA
	X H	X X X	↑ X	X ↑	X X	X X X

Transfer Storage Data to Bus A or Bus B

OE	DIR	CAB	CBA	SAB	SBA
L	Η	X H or L	H or L X	X H	H X

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	−0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{ } \le +7.0$		V
V _O	DC Output Voltage	$-0.5 \le V_{O} \le +7.0$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
lok	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Io	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min Typ	Max	Unit
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5 3.3	3.6 3.6	V
VI	Input Voltage	0	5.5	V
V _O	Output Voltage (HIGH or LOW State) (3–State)	0	V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current, V _{CC} = 3.0 V – 3.6 V	2	-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0 V – 3.6 V		24	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 2.7 V - 3.0 V		-12	mA
I _{OL}	LOW Level Output Current, V _{CC} = 2.7 V - 3.0 V		12	mA
T _A	Operating Free-Air Temperature	-40	+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0	10	ns/V

DC ELECTRICAL CHARACTERISTICS

CV ARV			T _A = -40°C		
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2.)	2.7 V ≤ V _{CC} ≤ 3.6 V	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2.)	2.7 V ≤ V _{CC} ≤ 3.6 V		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OH} = -100 \mu\text{A}$	V _{CC} - 0.2		V
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		V _{CC} = 3.0 V; I _{OH} = -18 mA	2.4		
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		
V _{OL}	LOW Level Output Voltage	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	1

^{2.} These values of V_I are used to test DC electrical characteristics only.

^{1.} Output in HIGH or LOW State. I_O absolute maximum rating must be observed.

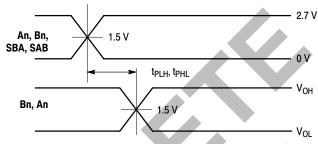
DC ELECTRICAL CHARACTERISTICS (Continued)

			T _A = -40°C to +85°C		
Symbol	Characteristic	Condition	Min	Max	Unit
II	Input Leakage Current	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; 0 \text{ V} \le \text{V}_{I} \le 5.5 \text{ V}$		±5.0	μΑ
I _{OZ}	3-State Output Current	$2.7 \le V_{CC} \le 3.6 \text{ V}; 0 \text{ V} \le V_{O} \le 5.5 \text{ V};$ $V_{I} = V_{IH} \text{ or V }_{IL}$		±5.0	μΑ
I _{OFF}	Power-Off Leakage Current	V_{CC} = 0 V; V_I or V_O = 5.5 V		10	μΑ
I _{CC}	Quiescent Supply Current	$2.7 \le V_{CC} \le 3.6 \text{ V}; V_I = \text{GND or } V_{CC}$		10	μΑ
		$2.7 \le V_{CC} \le 3.6 \text{ V}; \ 3.6 \le V_{I} \text{ or } V_{O} \le 5.5 \text{ V}$		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	2.7 ≤ V _{CC} ≤ 3.6 V; V _{IH} = V _{CC} - 0.6 V		500	μΑ

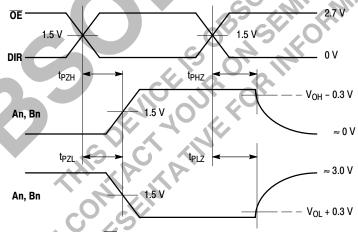
AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$)

			Limits				
				T _A = -40°C	C to +85°C	,O,	
			V _{CC} = 3.0	V to 3.6 V	V _{CC} =	2.7 V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Unit
f _{max}	Clock Pulse Frequency	3	150	70	70	12	MHz
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	7.0 7.0	1.5 1.5	8.0 8.0	ns
t _{PLH} t _{PHL}	Propagation Delay Clock to Output	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PLH} t _{PHL}	Propagation Delay Select to Output	1	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
ts	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
t _h	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
t _w	Clock Pulse Width, HIGH or LOW	3	3.3		3.3		ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3.)			1.0 1.0			ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.


DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4.)	$V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4.)	V _{CC} = 3.3 V, C _L = 50 pF, V _{IH} = 3.3 V, V _{IL} = 0 V		0.8		V


^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10MHz, V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	25	pF

WAVEFORM 1 – SAB to B and SBA to A, An to Bn PROPAGATION DELAYS $t_R=t_F=2.5~\text{ns},~10\%$ to $90\%;~f=1~\text{MHz};~t_W=500~\text{ns}$

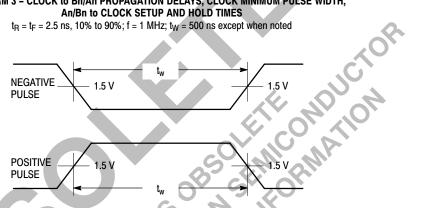
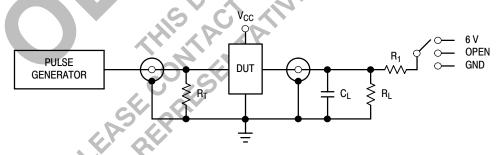

WAVEFORM 2 – $\overline{\text{OE}/\text{DIR}}$ to An/Bn OUTPUT ENABLE AND DISABLE TIMES t_R = t_F = 2.5 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

Figure 3. AC Waveforms

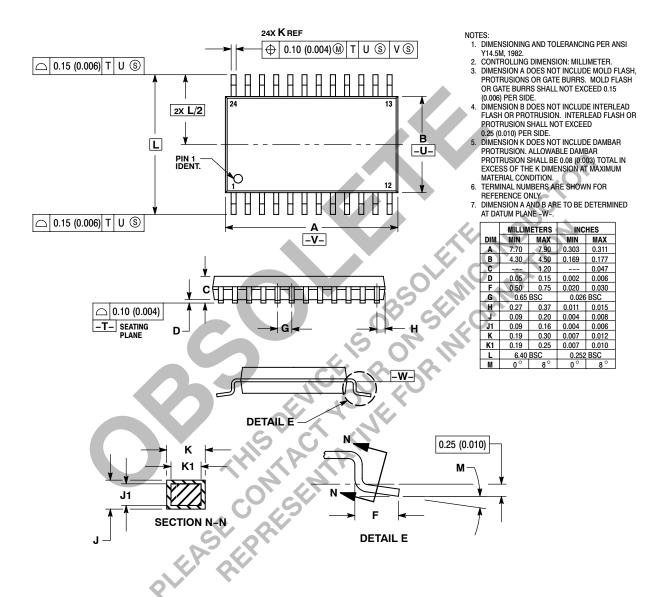

WAVEFORM 3 - CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH, An/Bn to CLOCK SETUP AND HOLD TIMES

 t_R = t_F = 2.5 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns except when noted

WAVEFORM 4 - INPUT PULSE DEFINITION $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\% \text{ of } 0 \text{ V to } 2.7 \text{ V}$

Figure 4. AC Waveforms

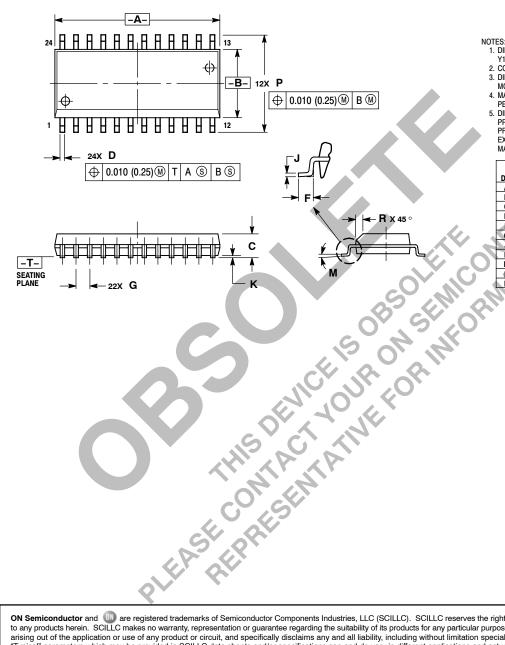
TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V
Open Collector/Drain t _{PLH} and t _{PHL}	6 V
t _{PZH} , t _{PHZ}	GND


 C_L = 50 pF or equivalent (Includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 5. Test Circuit

PACKAGE DIMENSIONS


DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948H-01 ISSUE O

PACKAGE DIMENSIONS

DW SUFFIX

PLASTIC SOIC PACKAGE CASE 751E-04 ISSUE E

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	15.25	15.54	0.601	0.612
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D_	0.35	0.49	0.014	0.019
Æ	0.41	0.90	0.016	0.035
G	1.27 BSC		0.050 BSC	
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M d	00	8°	0°	8°
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative