

MC4023F, L, \mathbf{P}^{*}

ADVANCE INFORMATION/NEW PRODUCT

LOGIC DIAGRAM

[^0]This device is a 4 -bit counter with internally connected feedback. Inputs and outputs can be connected to count to any number between two and twelve except seven and eleven. Reset inputs are provided on each flip-flop to allow direct setting of the Q outputs to zero any time during the counting cycle.

Each flip-flop in the counter is built from high and low-level gates as shown by the logic diagram. The flip-flops and the feedback inverter are connected as shown by the block diagram to provide minimum power dissipation and maximum drive capability.

LOW.LEVEL GATE

HIGH-LEVEL GATE

INPUT LOADING and OUTPUT DRIVING FACTORS with respect to MTTL and MDTL families

	MC4000 INPUT LOADING	MC4000 OUTPUT FAMIVE FACTOR
FACTOR		

Note: Differences in MC4000 series loading factors result from differences in specifications for each family
**Applies only when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic " 1 " state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability to fan-out of 3

DC ELECTRICAL CHARACTERISTICS
($T_{A}=0$ to $75^{\circ} \mathrm{C}$)

Characteristic	Symbol	Value	Conditions
```Input Forward Current - J C1,C3 C2, R```	'F1	- 1.6 mAdc max   - 3.2 mAdc max   -4.8 mAdc max	$V_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}$
$\begin{aligned} & \mathrm{J} \\ & \mathrm{C} 1, \mathrm{C} 3 \\ & \mathrm{C} 2, \mathrm{R} \end{aligned}$	If2	-1.4 mAdc max - 2.8 mAdc max -4.2 mAdc max	$V_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}$
Leakage Current - J   C1, C3   C2, R	$I_{R}$	$\begin{aligned} & 40 \mu \text { Adc max } \\ & 80 \mu \text { Adc max } \\ & 120 \mu \text { Adc max } \end{aligned}$	$\mathrm{V}_{\text {in }}=2.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}$
Breakdown Voltage	$B V_{\text {in }}$	5.5 Vdc max	$\mathrm{I}_{\text {in }}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$
Clamp Voltage	$V_{D}$	-1.5 Vdc max	${ }^{1} \mathrm{D}=-10 \mathrm{mAdc}, \mathrm{V}_{C C}=4.75 \mathrm{Vdc}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
Threshold Voltage	$V_{\text {th }}{ }^{\prime \prime}$ "	2.0 Vdc   1.8 Vdc	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{A}=+25^{\circ} \mathrm{C} \text {, or } T_{A}=75^{\circ} \mathrm{C} \end{aligned}$
	$V_{\text {th }}$ " 0 "	1.1 Vdc 0.9 Vdc	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C}, \text { or } T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=+75^{\circ} \mathrm{C} \end{aligned}$
Output Output Voltage	$V_{\text {OL }}$	0.4 Vdc max   0.4 Vdc max	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{OL}}=17.6 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{Vdc} \end{aligned}$
	VOH	2.5 Vdc max	$\mathrm{I}^{\mathrm{OH}}=-1.6 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}$
Short-Circuit Current	ISC	-20 to -65 mAdc	$\mathrm{V}_{\text {out }}=0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}$

## MC4023F, L, P (continued)

COUNTING SEQUENCES





[^0]:    * F suffix = TO-86 ceramic flat package (Case 607).

    L suffix = TO-116 ceramic dual in-line pack age (Case 632)
    P suffix = TO-116 plastic dual in-line package (Case 605).

