4-BIT UNIVERSAL COUNTER

MC4023F, L, P*

ADVANCE INFORMATION/NEW PRODUCT

This device is a 4-bit counter with internally connected feedback. Inputs and outputs can be connected to count to any number between two and twelve except seven and eleven. Reset inputs are provided on each flip-flop to allow direct setting of the Q outputs to zero any time during the counting cycle.

Each flip-flop in the counter is built from high and low-level gates as shown by the logic diagram. The flip-flops and the feedback inverter are connected as shown by the block diagram to provide minimum power dissipation and maximum drive capability.

HIGH-LEVEL GATE

LOGIC DIAGRAM

¹F suffix = TO-86 ceramic flat package (Case 607). L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605).

MC4023F, L, P (continued)

FAMILY	MC4000 INPUT LOADING FACTOR	MC4000 OUTPUT DRIVE FACTOR	Note: Differences in MC4000 series loading factors result fi differences in specifications for each family
MC4000	1.0	10	**Applies only when input is being driven by MDTL gate wit
MC400	1.0	10	2.0 k ohm pullup resistor. Logic "1" state drive limitations of
MC2000	0.67	6	gates with 6.0 k ohm pullup resistors reduce drive capabilit
MC3000	0.7	8	to fan-out of 3.
MC7400	1.0	10	to fail-out of 5.
MC830	1.15**	12	

INPUT LOADING and OUTPUT DRIVING FACTORS with respect to MTTL and MDTL families

DC ELECTRICAL CHARACTERISTICS $(T_A = 0 \text{ to } 75^{\circ}\text{C})$

Characteristic	Symbol	Value	Conditions	
Input				
Forward Current – J	IF1	-1.6 mAdc max		
C1, C3	}	-3.2 mAdc max	V _{in} = 0.4 Vdc, V _{CC} = 5.25 Vdc	
C2, R		-4.8 mAdc max		
J	¹ F2	-1.4 mAdc max		
C1, C3		-2.8 mAdc max	V _{in} = 0.4 Vdc, V _{CC} = 4.75 Vdc	
C2, R		-4.2 mAdc max		
Leakage Current – J	ⁱ R	40 µAdc max		
C1, C3		80 µAdc max	V _{in} = 2.5 Vdc, V _{CC} = 5.25 Vdc	
C2, R		120 µAdc max		
Breakdown Voltage	₿Vin	5.5 Vdc max	$I_{in} = 1.0 \text{ mAdc}, V_{CC} = 5.25 \text{ Vdc}, T_A = 25^{\circ}\text{C}$	
Clamp Voltage	VD	-1.5 Vdc max	$I_D = -10 \text{ mAdc}, V_{CC} = 4.75 \text{ Vdc}, T_A = 25^{\circ}\text{C}$	
Threshold Voltage	V _{th} "1"	2.0 Vdc	$T_A = 0^{\circ}C$	
		1.8 Vdc	T _A = +25 ^o C, or T _A = 75 ^o C	
	Vth "0"	1.1 Vdc	$T_A = 0^{\circ}C$, or $T_A = +25^{\circ}C$	
		0.9 Vdc	T _A = +75 ^o C	
Output		1		
Output Voltage	VOL	0.4 Vdc max	I _{OL} = 16 mAdc, V _{CC} = 4.75 Vdc	
		0.4 Vdc max	I _{OL} = 17.6 mAdc, V _{CC} = 5.25 Vdc	
	∨он	2.5 Vdc max	I _{OH} = -1.6 mAdc, V _{CC} = 4.75 Vdc	
Short-Circuit Current	'sc	-20 to -65 mAdc	V _{out} = 0 Vdc, V _{CC} = 5.0 Vdc	

MC4023F, L, P (continued)

COUNTING SEQUENCES

1 1 0 0 2 0 1 0 0 3 1 1 0 0 4 0 0 1 0 5 1 0 1 0	Č 2	02	03	<u>0</u> 1	Q4
2 0 1 0 0 3 1 1 0 0 4 0 0 1 0 5 1 0 1 0	0	0	0	0	0
3 1 1 0 0 4 0 0 1 0 5 1 0 1 0	1	1	0		0
4 0 0 1 0 5 1 0 1 0	2	0	1	0	0
5 1 0 1 0	3	1	1	0	0
	4	0	0	1	0
	5	1	0	1	0
	6	0	1	1	0
7 1 1 1 0	7	1	1	1	0
8 0 0 0 1	8	0	0	0	1

......