MC14541B

Programmable Timer

The MC14541B programmable timer consists of a 16–stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power–on reset circuit, and output control logic.

Timing is initialized by turning on power, whereupon the power–on reset is enabled and initializes the counter, within the specified V_{DD} range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16–stage counter divides the oscillator frequency (f_{OSC}) with the nth stage frequency being $f_{OSC}/2^n$.


- Available Outputs 28, 210, 213 or 216
- Increments on Positive Edge Clock Transitions
- Built-in Low Power RC Oscillator (± 2% accuracy over temperature range and ± 20% supply and ± 3% over processing at < 10 kHz)
- Oscillator May Be Bypassed if External Clock Is Available (Apply external clock to Pin 3)
- External Master Reset Totally Independent of Automatic Reset
 Operation
- Operates as 2ⁿ Frequency Divider or Single Transition Timer
- Q/Q Select Provides Output Logic Level Flexibility
- Reset (auto or master) Disables Oscillator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow Clock Rise and Fall Times
- Automatic Reset Initializes All Counters On Power Up
- Supply Voltage Range = 3.0 Vdc to 18 Vdc with Auto Reset
 - Disabled (Pin 5 = V_{DD})
 - 8.5 Vdc to 18 Vdc with Auto Reset Enabled (Pin 5 = V_{SS})

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	– 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} + 0.5	V
l _{in}	Input Current (DC or Transient), per Pin	± 10	mA
l _{out}	Output Current (DC or Transient), per Pin	± 45	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	– 65 to + 150	°C
тլ	Lead Temperature (8–Second Soldering)	260	°C

* Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

R _{tc} [1●	14	D V _{DD}			
с _{tс} [2	13	В			
rs [3	12] A			
NC [4	11] NC			
ar D	5	10	D MODE			
MR [6	9] Q/Q SEL			
v _{ss} D	7	8	la			
NC = NO CONNECTION						

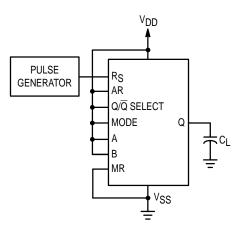
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	- 55	5°C		25°C		125	5°C	
Characteristic		Symbol	Vdc	Min	Мах	Min	Тур #	Мах	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	VOL	5.0 10 15		0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95		Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	VIL	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		Vdc
Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$	Source	ЮН	5.0 10 15	- 7.96 - 4.19 - 16.3		- 6.42 - 3.38 - 13.2	- 12.83 - 6.75 - 26.33		- 4.49 - 2.37 - 9.24		mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	IOL	5.0 10 15	1.93 4.96 19.3		1.56 4.0 15.6	3.12 8.0 31.2		1.09 2.8 10.9		mAdc
Input Current		l _{in}	15		± 0.1	_	±0.00001	± 0.1	—	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	—	_	—	5.0	7.5	—		pF
Quiescent Current (Pin 5 is High) Auto Reset Disabled		IDD	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μAdc
Auto Reset Quiescent Curr (Pin 5 is low)	rent	IDDR	10 15	_	250 500	_	30 82	250 500	_	1500 2000	μAdc
Supply Current**† (Dynamic plus Quiesce	nt)	۱ _D	5.0 10 15			I _D = (0).4 μA/kHz) f).8 μA/kHz) f I.2 μA/kHz) f	+ I _{DD}			μAdc

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. ** The formulas given are for the typical characteristics only at 25°C.

†When using the on chip oscillator the total supply current (in μ Adc) becomes: $I_T = I_D + 2 C_{tc} V_{DD} f \times 10^{-3}$ where I_D is in μ A, C_{tc} is in pF, V_{DD} in Volts DC, and f in kHz. (see Fig. 3) Dissipation during power–on with automatic reset enabled is typically 50 μ A @ $V_{DD} = 10$ Vdc.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.


Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25° C)

Characteristic	Symbol	V _{DD}	Min	Typ #	Max	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15		100 50 40	200 100 80	ns
Propagation Delay, Clock to Q (2^8 Output) tPLH, tPHL = (1.7 ns/pF) CL + 3415 ns tPLH, tPHL = (0.66 ns/pF) CL + 1217 ns tPLH, tPHL = (0.5 ns/pF) CL + 875 ns	^t PLH ^t PHL	5.0 10 15		3.5 1.25 0.9	10.5 3.8 2.9	μs
Propagation Delay, Clock to Q (2^{16} Output) tPHL, tPLH = (1.7 ns/pF) CL + 5915 ns tPHL, tPLH = (0.66 ns/pF) CL + 3467 ns tPHL, tPLH = (0.5 ns/pF) CL + 2475 ns	^t PHL ^t PLH	5.0 10 15		6.0 3.5 2.5	18 10 7.5	μs
Clock Pulse Width	^t WH(cl)	5.0 10 15	900 300 225	300 100 85		ns
Clock Pulse Frequency (50% Duty Cycle)	f _{cl}	5.0 10 15		1.5 4.0 6.0	0.75 2.0 3.0	MHz
MR Pulse Width	^t WH(R)	5.0 10 15	900 300 225	300 100 85		ns
Master Reset Removal Time	trem	5.0 10 15	420 200 200	210 100 100		ns

* The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

 $(\mathsf{R}_{tc} \, \mathsf{AND} \, \mathsf{C}_{tc} \, \mathsf{OUTPUTS} \, \mathsf{ARE} \, \mathsf{LEFT} \, \mathsf{OPEN})$

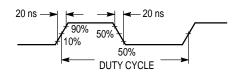


Figure 1. Power Dissipation Test Circuit and Waveform

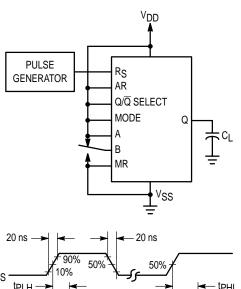
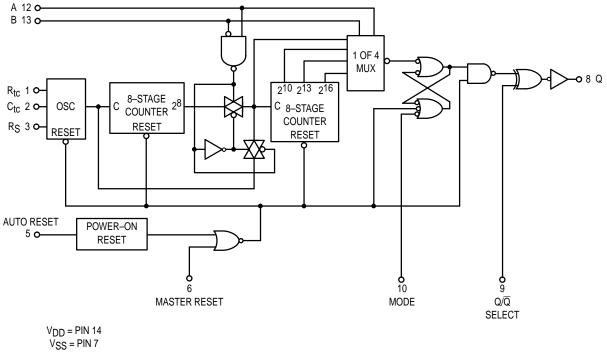



Figure 2. Switching Time Test Circuit and Waveforms

FREQUENCY SELECTION TABLE

А	В	Number of Counter Stages n	Count 2 ⁿ
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

TRUTH TABLE

	State				
Pin	0	1			
Auto Reset, 5	Auto Reset Operating	Auto Reset Disabled			
Master Reset, 6	Timer Operational	Master Reset On			
Q/\overline{Q} , 9	Output Initially Low After Reset	Output Initially High After Reset			
Mode, 10	Single Cycle Mode	Recycle Mode			

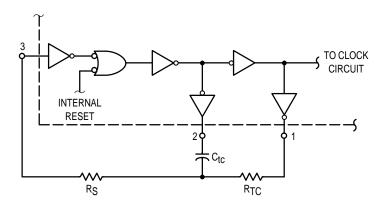


Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

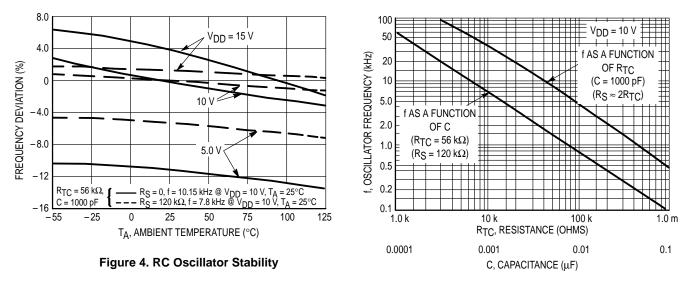


Figure 5. RC Oscillator Frequency as a Function of Rtc and Ctc

2¹⁶). The 2ⁿ counts as shown in the Frequency Selection

Table represents the Q output of the Nth stage of the counter.

When A is "1", 2¹⁶ is selected for both states of B. However,

when B is "0", normal counting is interrupted and the 9th

counter stage receives its clock directly from the oscillator

output level. When the counter is in a reset condition and Q/\overline{Q} select pin is set to a "0" the Q output is a "0", correspondingly when Q/\overline{Q} select pin is set to a "1" the Q output is

The Q/\overline{Q} select output control pin provides for a choice of

When the mode control pin is set to a "1", the selected count is continually transmitted to the output. But, with mode

pin "0" and after a reset condition the RS flip-flop (see Ex-

panded Block Diagram) resets, counting commences, and

after 2n-1 counts the RS flip-flop sets which causes the output to change state. Hence, after another 2ⁿ⁻¹ counts the

output will not change. Thus, a Master Reset pulse must be

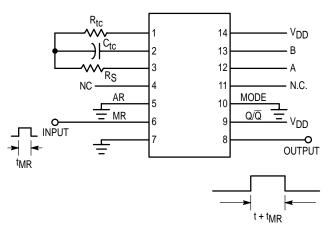
applied or a change in the mode pin level is required to reset

(i.e., effectively outputting 2^8).

the single cycle operation.

OPERATING CHARACTERISTICS

With Auto Reset pin set to a "0" the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a "1". Both types of reset will result in synchronously resetting all counter stages independent of counter state. Auto Reset pin when set to a "1" provides a low power operation.


The RC oscillator as shown in Figure 3 will oscillate with a frequency determined by the external RC network i.e.,

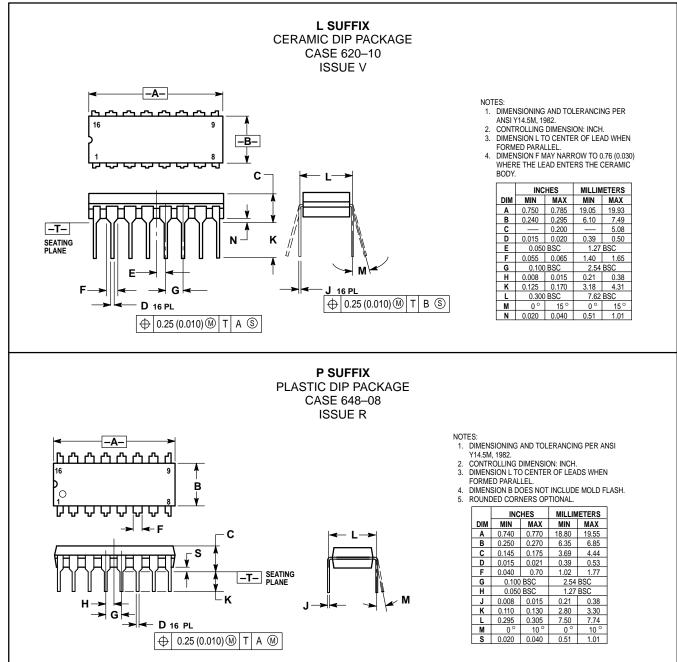
$$\begin{split} f &= \frac{1}{2.3 \ \text{R}_{\text{tc}} \text{C}_{\text{tc}}} \qquad & \text{if (1 \ \text{kHz} \leq f \leq 100 \ \text{kHz})} \\ \text{R}_{\text{S}} &\approx 2 \ \text{R}_{\text{tc}} \qquad & \text{where } \text{R}_{\text{S}} \geq 10 \ \text{k}\Omega \end{split}$$

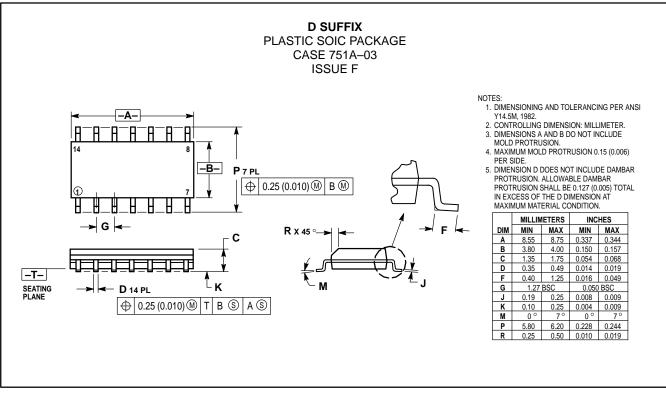
and $R_S \approx 2 R_{tc}$

A value of RS required to sustain oscillation over a wide range of operating temperatures may need to be determined empirically. This may be done by finding a minimum to maximum resistor value range for oscillation at the two operating temperature extremes. Then, select a value well centered in the overlapping span of the combined ranges.

The time select inputs (A and B) provide a two-bit address to output any one of four counter stages (28, 210, 213 and

DIGITAL TIMER APPLICATION


a "1".


When Master Reset (MR) receives a positive pulse, the internal counters and latch are reset. The Q output goes high and remains high until the selected (via A and B) number of clock pulses are counted, the Q output then goes low and remains low until another input pulse is received.

This "one shot" is fully retriggerable and as accurate as the input frequency. An external clock can be used (pin 3 is the clock input, pins 1 and 2 are outputs) if additional accuracy is needed.

Notice that a setup time equal to the desired pulse width output is required immediately following initial power up, during which time Q output will be high.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the solitoreal customer application employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26629298

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,

 \Diamond

Mfax is a trademark of Motorola, Inc.