(4) MOTOROLA

CMOS MSI

SYNCHRONOUS PRESETTABLE 4-BIT COUNTERS

The MC14160B - MC14163B are synchronous programmable counters constructed with complementary MOS P.Channel and N.Channel enhancement mode devices in a single monolithic struc ture. These counters are functionally equivalent to the 74160

7463 TLL counters.
Two are synchronous programmabie BCD 'counters with asynchronous and synchronous clear inputs respectively (MC14160B, MC14162B). The asynchronous and synchronous clear respectively (MC141618, MC14163B).

- Internal Look.Ahead for Fast Counting
- Carry Output for N-Bit Cascading
- Synchronously Programmable
- Synchronous Countin
- Load Control Line
- Synchronous or Asynchronous Clear
- Positive Edge Clocked

Maximum Ratings are those values beyond which damage to the device may 0 ccur.
tTomperature Derating: Plastic "P and DAD' Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$ Corack "L" Packages: - 12 mw ${ }^{\circ} \mathrm{C}$ From $100^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or elactric fields. However, precautions must be taken to avoid applications of any voitage higher than maximum rated
voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and
$v_{\text {out }}$ should be constrained to the range $V_{S S} \leqslant\left(V_{\text {in }}\right.$ or $\left.v_{\text {out }}\right) \leqslant V_{D D}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

MC14160B
 MC14161B
 MC14162B
 MC14163B

L SUFFIX CERAMIC CASE 620 P SUFFIX PLASTIC GASE 648 D SUFFIX SOIC CASE 751B ORDERING INFORMATION MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBD SOIC $\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages.	

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ \＃	Max	Min	Max	
Output Voltage ＂0＂Level $V_{\text {in }}=V_{D D}$ or 0	Vol	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	二	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	－	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$v_{i n}=0 \text { or } v_{D D} \quad \text { "Y" Level }$	VOH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	二	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	－	Vdc
$\begin{array}{ll} \text { Input Voitage } & \text { " } 0 \text { " Level } \\ \left(V_{0}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(V_{0}=9.0 \text { or } 1.0 \mathrm{Vdc)}\right. \\ \left(V_{0}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{V}_{\text {LL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	二	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{VO}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left.\mathrm{VO}_{\mathrm{o}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & (\mathrm{VO}=1.5 \text { or } 13.5 \mathrm{Vdc}) \end{aligned}$	V_{H}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	－	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.50 \\ & 8.25 \end{aligned}$	二	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \\ & \hline \end{aligned}$	二	Vdc
	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 50 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	$\begin{aligned} & \text { 二 } \\ & \text { 二 } \end{aligned}$	$\begin{array}{r} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{array}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	二－	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	－	mAdc
$\begin{aligned} & (\mathrm{VOL}=0.4 \mathrm{Vdc}) \\ & (\mathrm{VOL}=0.5 \mathrm{Vdc}) \end{aligned}$ $(\mathrm{VOL}=1.5 \mathrm{Vdc})$	IOL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.51 \\ & 1.3 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 2.25 \\ & 8.8 \end{aligned}$	－	$\begin{aligned} & 0.36 \\ & 0.9 \\ & 2.4 \\ & \hline \end{aligned}$	二	mAdo
Input Current	lin	15	－	± 0.1	－	± 0.00001	± 0.1	－	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{i n}=0\right)$	$\mathrm{Cin}_{\text {in }}$	－	－	－	－	5.0	7.5	－	－	pF
Quiescent Current （Per Package）	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	二	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current＊＊\dagger （Dynamic plus Quiescent． Per Package） （ $C_{L}=50 \mathrm{pF}$ on all outputs，all buffers switching）	IT	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & I_{T}=(0.56 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(1.10 \mu \mathrm{NHZz)} \mathrm{f}+\mathrm{IDD} \\ & \mathrm{I}_{\mathrm{T}}=(1.90 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{IDD} \end{aligned}$							μ Adc

\＃Data labelled＂Typ＂is not to be used for design purposes but is
intended as an indication of the IC＇s potential performance．
＂The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$ ．
\dagger To calculate total supply current at loads other than 50 pF ：

$$
I_{T}\left(C_{L}\right)=I_{T}(50 p F)+\left(C_{L}-50\right) V \leqslant k
$$

where：$T T$ is in μA（per package），C_{L} in $p F, V=\left(V_{D D}-V_{S S}\right)$ in volts，

PIN ASSIGNMENT

MC14160B thru MC14163B

MC14160B thru MC14163B

Characteristic	Symbol	$\begin{aligned} & \hline v_{\mathrm{DD}} \\ & v_{\mathrm{dc}} \end{aligned}$	Min	Typ *	Max	Unit
	twL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 200 \\ 90 \\ 60 \end{gathered}$	$\begin{gathered} 100 \\ 45 \\ 30 \end{gathered}$	-	ns
Clock Pulse Width, High	${ }^{\text {tw }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 70 \end{aligned}$	$\begin{aligned} & 125 \\ & 50 \\ & 35 \end{aligned}$	-	ns
Clock Rise and Fall Time	$\begin{aligned} & t_{f} \\ & t_{f} \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	-	15 5 4	$\mu 5$
Clock Pulso Frequency	${ }^{\text {c }}$ c	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 8.0 \end{aligned}$	4 1.0 2.5 4.0	MHz

The tormulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
Data laballed "Typ" is not to be used for design purposes but is
intended as an indication of the IC's potential performance.

MC14160B thru MC14163B

FUNCTIONAL DESCRIPTION

These counters are fully programmable; that is the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the levels of the enable inputs. The clear function for the MC14160B, MC14161B is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardiess of the levels of the clock, load or enable inputs. The clear function for the MC14162B and MC14163B is synchronous and a low level at the clear inputs sets all four of the filp-ilop outputs low after the inputs. This synchronous clear allows the count length to be modified easily; decoding the maximum count de-
sired can be acomplished with one external NAND gate. The gate output is connected to the clear input to syn chronously clear the counter to 0000 (LLLLL)

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing thi function are two count enable inputs and a carry output Both count-enable inputs (PE, TE) must be high to count and enable input TE fed forward to enable the carr output. The carry output thus enabled will produce positive output pulse with a duration approximately tive to positive poltion of dhe al aut. This pos tive overlow carry pulse can be used to enable successiv cascaded stages.

MC14160B thru MC14163B

MC14160B, MC14162B LOGIC DIAGRAN
Clepr is synctironous for MC14152B

MC14160B thru MC14163B

MC14160B, MC14262B TIMING DIAGRAM

MC14160B thru MC14163B

MC141618, MC14163B LOGIC DIAGRAM

(Clear is Synchronous for MC34163B)

MC14160B thru MC14163B

MC14161B, MC14163B TIMING DIAGRAM

