
Quad Bus Driver

The MC10192 contains four line drivers with complementary outputs. Each driver has a Data (D) input and shares an $\overline{E}nable$ (\overline{E}) input with another driver. The two driver outputs are the uncommitted collectors of a pair of NPN transistors operating as a current switch. Each driver accepts 10K MECL input signals and provides a nominal signal swing of 800 mV across a 50 Ω load at each output collector. Outputs can drive higher values of load resistance, provided that the combination of I_R drop and load return voltage V_{LR} does not cause an output collector to go more negative than –2.4 V with respect to V_{CC} . To avoid output transistor breakdown, the load return voltage should not be more positive than +5.5 V with respect to V_{CC} . When the \overline{E} input is high, both output transistors of a driver are nonconducting. When not used, the \overline{E} inputs, as well as the D inputs, may be left open.

- Open Collector Outputs Drive Terminated Lines or Transformers
- 50 kW Input Pulldown Resistors on All Inputs (Unused Inputs May Be Left Open)
- Power Dissipation = 575 mW typ/pkg (No Load)
- Propagation Delay = 3.5 ns typ (\overline{E} Output) 3.0 ns typ (D — Output)

TRUTH TABLE

Inp	uts	Output					
Ē	D	Z	Z				
Н	Х	Н	Н				
L	Н	Н	L				
L	L	L	Н				

Note: Unused outputs must be terminated to V_{CC} for proper operation.

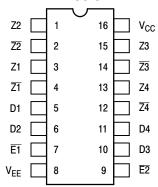
ON Semiconductor

http://onsemi.com

CDIP-16 L SUFFIX CASE 620

PDIP-16 P SUFFIX CASE 648

PLCC-20 FN SUFFIX CASE 775


A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ORDERING INFORMATION

Device	Package	Shipping
MC10192L	CDIP-16	25 Units / Rail
MC10192P	PDIP-16	25 Units / Rail
MC10192FN	PLCC-20	46 Units / Rail

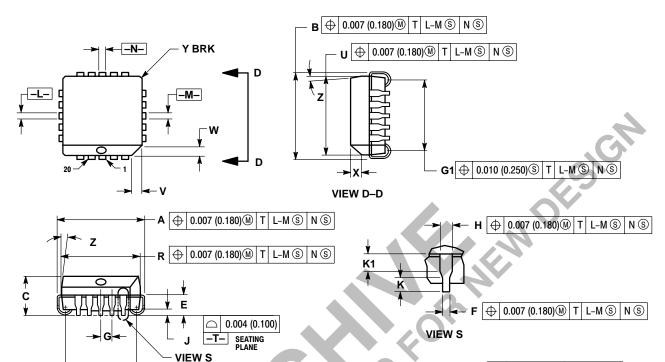
ELECTRICAL CHARACTERISTICS

						Test I	_imits			
			Pin Under	-3	0°C	+2	5°C	+85	5°C	
Characteris	stic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Cu	rrent	Ι _Ε	8		154		140		154	mAdc
Input Current		I _{inH}	5		350		220		220	μAdc
		I _{inL}	5	0.5		0.5		0.3		μAdc
Output Current High	Logic 1	I _{OH}	2				2.0			mAdc
Output Current Low	Logic 0	I _{OL}	2	13.5	18.0	14.0	18.0	14.0	19.0	mAdc
Threshold Current High	Logic 1	I _{OHC}	2		2.0		2.0		2.0	mAdc
Threshold Current Low	Logic 0	I _{OLC}	2	13.5		14.0		14.0		mAdc
Output Sink Current Lov	w Logic 0	I _{OS}	2	13.3		13.9		13.3		mAdc
Load Return Voltage Ab Rating (Note 1.)	osolute Max	V_{LR}			5.5		5.5		5.5	٧
Output Voltage Low (No	ote 2.)	V _{OLS}				-2.4				V
Switching Times	(50 Ω Load)									ns
Propagation Delay	E to Output D to Output	t _{PHL} t _{PLH}				2.0 1.5	6.0 4.5			
Rise/Fall Time	(20 to 80%)	t _{TLH} t _{THL}					3.3			

^{1.} The 5.5V value is a maximum rating, do not exceed. A 270Ω resistor will prevent output transistor breakdown.

ELECTRICAL CHARACTERISTICS (continued)

				TEST VOL	TAGE VALU	IES (Volts)		
	@ Test Te	mperature	V _{IHmax}	$V_{\rm ILmin}$	V _{IHAmin}	V _{ILAmax}	V _{EE}	
		−30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
		+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
		+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin	TEST \	OLTAGE API	PLIED TO PI	NS LISTED E	BELOW	04)
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain Current	ΙΕ	8					8	16
Input Current	I _{inH}	5	5				8	16
	l _{inL}	5		5			8	16
Output Current High Logic 1	Гон	2		5,6,10,11			8	16
Output Current Low Logic 0	l _{OL}	2	5,6,10,11				8	16
Threshold Current High Logic 1	I _{OHC}	2		5,7,9,10,11		6	8	16
Threshold Current Low Logic 0	I _{OLC}		5,10,11	7,9	6		8	16
Output Sink Current Low Logic 0	Ios	2	5,6,10,11				8	16
Load Return Voltage Absolute Max Rating (Note 1.)	V_{LR}						8	16
Output Voltage Low (Note 2.)	V _{OLS}						8	16


Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

^{2.} Limitations of load resistor and load return voltage combinations. Refer to page 1 description.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

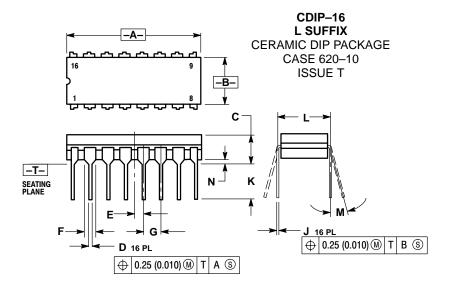
PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

NOTES:

G1 ⊕ 0.010 (0.250)③ T L-M ⑤ N ⑤

OF MICE. NOT PRESCO

- IOTES:


 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

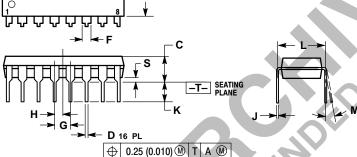
	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.385	0.395	9.78	10.03
В	0.385	0.395	9.78	10.03
С	0.165	0.180	4.20	4.57
Ε	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10°	2 °	10°
G1	0.310	0.330	7.88	8.38
K1	0.040		1.02	

NOTES:

- ANIES.

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 CONTROLLING DIMENSION: INCH.


 DIMENSION L TO CENTER OF LEAD WHEN

- FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
E	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62	BSC 4	
M	0 °	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

ON Semiconductor and War are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.