```
\(V_{\mathrm{CC} 1}=\mathrm{Pin}^{1}\)```
\(V_{\mathrm{CC} 1}=\mathrm{Pin}^{1}\)
\(V_{C C 2}=P\) in 16
\(V_{C C 2}=P\) in 16
    \(V_{E E}=\operatorname{Pin} 8\)
    \(V_{E E}=\operatorname{Pin} 8\)
        (0) + 1 L.A.
```

 (0) + 1 L.A.
    ```


```

 + n. . fon to + ...at state
    ```
        + n. . fon to + ...at state
\(P_{D}=460 \mathrm{~mW}\) typ/pkg (No Load)
\(P_{D}=460 \mathrm{~mW}\) typ/pkg (No Load)
'toggle 150 MHz (typ)
```

'toggle 150 MHz (typ)

```

(00.1 \(16+4\)
\(\therefore\) O. . 4.4. ten narstan

oad)
``` Oggle 150 MHz (typ) \(\square\)
```

CLOCKED TRUTH TABLE


1411


## Hex D Master-Slave <br> Flip-Flop

The MC10176 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.

