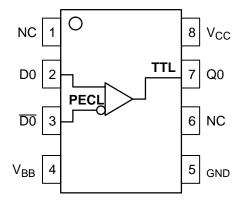
5V Differential PECL to TTL Translator


The MC10ELT/100ELT21 is a differential PECL to TTL translator. Because PECL (Positive ECL) levels are used, only +5 V and ground are required. The small outline 8-lead package and the single gate of the ELT21 makes it ideal for those applications where space, performance and low power are at a premium.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

- 3.5 ns Typical Propagation Delay
- 24 mA TTL Output
- Flow Through Pinouts
- ESD Protection: >2 KV HBM
- Operating Range: V_{CC}= 4.75 V to 5.25 V with GND= 0 V
- Q Output Will Default High with Inputs Left Open or < 1.3 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 81 devices

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

PIN DESCRIPTION

PIN	FUNCTION
Q0 D0, D0 V _{BB} V _{CC} GND NC	TTL Output PECL Differential Inputs Reference Voltage Output Positive Supply Ground No Connect

ON Semiconductor™

http://onsemi.com

MARKING DIAGRAMS*

SO-8 D SUFFIX CASE 751

8 F F F F KLT21 ALYW

TSSOP-8 DT SUFFIX CASE 948R

 $\begin{array}{ll} H = MC10 & L = Wafer Lot \\ K = MC100 & Y = Year \\ A = Assembly Location & W = Work Week \end{array}$

ORDERING INFORMATION

Device	Package	Shipping						
MC10ELT21D	SO-8	98 Units/Rail						
MC10ELT21DR2	SO-8	2500 Tape & Reel						
MC100ELT21D	SO-8	98 Units/Rail						
MC100ELT21DR2	SO-8	2500 Tape & Reel						
MC10ELT21DT	TSSOP-8	98 Units/Rail						
MC10ELT21DTR2	TSSOP-8	2500 Tape & Reel						
MC100ELT21DT	TSSOP-8	98 Units/Rail						
MC100ELT21DTR2	TSSOP-8	2500 Tape & Reel						

^{*}For additional information, see Application Note AND8002/D

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Power Supply	GND = 0 V		7	V
V _{IN}	PECL Input Voltage	GND = 0 V	$V_1 \leq V_{CC}$	0 to 6	٧
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W
θJC	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

10ELT SERIES PECL INPUT DC CHARACTERISTICS V_{CC} = 5.0 V; GND= 0.0 V (Note 1.)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single Ended)	3770		4110	3870		4190	3930		4265	mV
V _{IL}	Input LOW Voltage (Single Ended)	3050		3500	3050		3520	3050		3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.81	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 2.)	2.2		5.0	2.2		5.0	2.2		5.0	٧
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.3			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

100ELT SERIES PECL INPUT DC CHARACTERISTICS V_{CC} = 5.0 V; GND= 0.0 V (Note 1.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.745	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 2.)	2.2		5.0	2.2		5.0	2.2		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

^{1.} Input parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.25 V. 2. V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}.

^{1.} Input parameters vary 1:1 with $V_{CC}.\ V_{CC}$ can vary \pm 0.25 V.

^{2.} V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC} .

TTL OUTPUT DC CHARACTERISTICS V_{CC}= 4.75 V to 5.25 V; T_A= -40° C to 85° C)

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -3.0 \text{mA}$	2.4		(Note 1.)	V
V _{OL}	Output LOW Voltage	I _{OL} = 24mA			0.5	V
I _{CCH}	Power Supply Current			20	29	mA
I _{CCL}	Power Supply Current			22	32	mA
Ios	Output Short Circuit Current		-150		-60	mA

^{1.} Max level is V_{CC}-0.7 by design.

AC CHARACTERISTICS $\rm V_{CC^{=}}~4.75~V$ to $\rm 5.25~V;~GND=0.0~V$

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		TBD			100			TBD		MHz
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _{PLH}	Propagation Delay @ 1.5 V C _L = 20pF	2.0		5.5	2.0		5.5	2.0		5.5	ns
t _{PHL}	Propagation Delay @ 1.5 V C _L = 20pF	2.0		5.5	2.0		5.5	2.0		5.5	ns
V_{PP}	Input Swing (Note 1.)	200		1000	200		1000	200		1000	mV
t _r /t _f	Output Rise/Fall Time C _L = 20pF (10–90%)					750					ps

^{1.} V_{PP}(min) is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40.

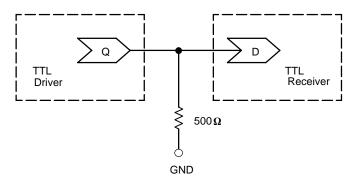


Figure 1. TTL Output Termination

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

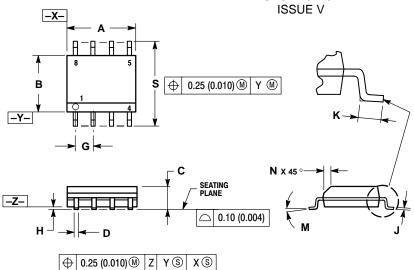
AN1560 – Low Voltage ECLinPS SPICE Modeling Kit

AN1568 – Interfacing Between LVDS and ECL

AN1596 – ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 – Using Wire-OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

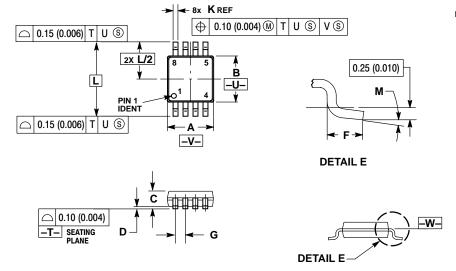

AND8001 - Odd Number Counters Design

AND8002 – Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SO-8 D SUFFIX PLASTIC SOIC PACKAGE CASE 751-07



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.35 1.75		0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.050 BSC			
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0 ° 8		0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 0.13 (0.00) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT
 EXCEED 0.25 (0.010) PER SIDE.
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	2.90	3.10	0.114	0.122			
В	2.90	3.10	0.114	0.122			
С	0.80	1.10	0.031	0.043			
D	0.05	0.15	0.002	0.006			
F	0.40	0.70	0.016	0.028			
G	0.65	BSC	0.026	BSC			
K	0.25	0.40	0.010	0.016			
L	4.90	4.90 BSC		BSC			
M	0°	6 °	0°	6°			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.